Skip to main content

Apoptotic Mechanisms for Neuronal Cells in Early Brain Injury After Subarachnoid Hemorrhage

  • Conference paper
Book cover Early Brain Injury or Cerebral Vasospasm

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 110/1))

Abstract

Objects: The major causes of death and disability in subarachnoid hemorrhage (SAH) may be early brain injury (EBI) and cerebral vasospasm. Although cerebral vasospasm has been studied and treated by a lot of drugs, the outcome is not improved even if vasospasm is reversed. Based on these data, EBI is considered a primary target for future research, and apoptosis may be involved in EBI after experimental SAH.

Methods: We reviewed the published literature about the relationship between SAH induced EBI and apoptosis in PubMed.

Result: Most available information can be obtained from the endovascular filament perforation animal model. After onset of SAH, intracranial pressure is increased and then cerebral blood flow is reduced. Many factors are involved in the mechanism of apoptotic cell death in EBI after SAH. In the neuronal cells, both intrinsic and extrinsic pathways of apoptosis can occur. Some antiapoptotic drugs were studied and demonstrated a protective effect against EBI after SAH. However, apoptosis in EBI after SAH has been little studied and further studies will provide us more beneficial findings. Conclusions: The study of apoptosis in EBI after experimental SAH may give us new therapies for SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang J, van Gelder JM. The probability of sudden death from rupture of intracranial aneurysms: a meta-analysis. Neurosurgery 2002;51:1101–5.

    Article  PubMed  Google Scholar 

  2. O’Hare TH. Subarachnoid hemorrhage: a review. J Emerg Med. 1987;5:135–4

    Article  PubMed  Google Scholar 

  3. Tseng MY, Czosnyka M, Richards H, Pickard JD, Kirkpatrick PJ. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial. Stroke 2005;36:1627–32.

    Article  PubMed  CAS  Google Scholar 

  4. Schievink WI, Riedinger M, Jhutty TK, Simon P. Racial disparities in subarachnoid hemorrhage mortality: Los Angeles County, California, 1985–1998. Neuroepidemiology 2004;23:299–305.

    Article  PubMed  Google Scholar 

  5. Nau R, Haase S, Bunkowski S, Brück W. Neuronal apoptosis in the dentate gyrus in humans with subarachnoid hemorrhage and cerebral hypoxia. Brain Pathol. 2002;12:329–36.

    PubMed  Google Scholar 

  6. Prunell GF, Mathiesen T, Diemer NH, Svendgaard NA. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery 2003;52:165–75.

    PubMed  Google Scholar 

  7. Bederson JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 1995;26:1086–91.

    Article  PubMed  CAS  Google Scholar 

  8. Schwartz AY, Masago A, Sehba FA, Bederson JB. Experimental models of subarachnoid hemorrhage in the rat: a refinement of the endovascular filament model. J Neurosci Methods. 2000;96:161–7.

    Article  PubMed  CAS  Google Scholar 

  9. Veelken JA, Laing RJ, Jakubowski J. The Sheffield model of subarachnoid hemorrhage in rats. Stroke 1995;26:1279–83

    Article  PubMed  CAS  Google Scholar 

  10. Török E, Klopotowski M, Trabold R, Thal SC, Plesnila N, Schöller K. Mild hypothermia (33 degrees C) reduces intracranial hypertension and improves functional outcome after subarachnoid hemorrhage in rats. Neurosurgery 2009;65:352–9.

    Article  PubMed  Google Scholar 

  11. Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins AL III et al. Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery 1998;42:352–62.

    Article  PubMed  CAS  Google Scholar 

  12. Park S, Yamaguchi M, Zhou C, Calvert JW, Tang J, Zhang JH. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke 2004;35:2412–7.

    Article  PubMed  CAS  Google Scholar 

  13. Matz PG, Copin JC, Chan PH. Cell death after exposure to subarachnoid hemolysate correlates inversely with expression of CuZn-superoxide dismutase. Stroke 2000;31:2450–9.

    Article  PubMed  CAS  Google Scholar 

  14. Endo H, Nito C, Kamada H, Yu F, Chan PH. Akt/GSK3beta survival signaling is involved in acute brain injury after subarachnoid hemorrhage in rats. Stroke 2006;37:2140–6.

    Article  PubMed  CAS  Google Scholar 

  15. Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89:991–6.

    Article  PubMed  CAS  Google Scholar 

  16. Matz PG, Fujimura M, Chan PH. Subarachnoid hemolysate produces DNA fragmentation in a pattern similar to apoptosis in mouse brain. Brain Res. 2000;858:312–9.

    Article  PubMed  CAS  Google Scholar 

  17. Matz PG, Fujimura M, Lewen A, Morita-Fujimura Y, Chan PH. Increased cytochrome c-mediated DNA fragmentation and cell death in manganese-superoxide dismutase-deficient mice after exposure to subarachnoid hemolysate. Stroke 2001;32:506–15.

    Article  PubMed  CAS  Google Scholar 

  18. Kimura H, Gules I, Meguro T, Zhang JH. Cytotoxicity of cytokines in cerebral microvascular endothelial cell. Brain Res. 2003;990:148–56.

    Article  PubMed  CAS  Google Scholar 

  19. Meguro T, Klett CP, Chen B, Parent AD, Zhang JH. Role of calcium channels in oxyhemoglobin-induced apoptosis in endothelial cells. J Neurosurg. 2000;93:640–6.

    Article  PubMed  CAS  Google Scholar 

  20. Ogihara K, Zubkov AY, Bernanke DH, Lewis AI, Parent AD, Zhang JH. Oxyhemoglobin-induced apoptosis in cultured endothelial cells. J Neurosurg. 1999;91:459–65.

    Article  PubMed  CAS  Google Scholar 

  21. Bazán NG, Rodríguez de Turco EB. Membrane lipids in the pathogenesis of brain edema: phospholipids and arachidonic acid, the earliest membrane components changed at the onset of ischemia. Adv Neurol. 1980;28:197–205.

    PubMed  Google Scholar 

  22. Gules I, Satoh M, Nanda A, Zhang JH. Apoptosis, blood-brain barrier, and subarachnoid hemorrhage. Acta Neurochir Suppl. 2003;86:483–7.

    Article  PubMed  CAS  Google Scholar 

  23. Chan PH. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res. 2004;29:1943–9.

    Article  PubMed  CAS  Google Scholar 

  24. Cheng G, Wei L, Zhi-Dan S, Shi-Guang Z, Xiang-Zhen L. Atorvastatin ameliorates cerebral vasospasm and early brain injury after subarachnoid hemorrhage and inhibits caspase-dependent apoptosis pathway. BMC Neurosci. 2009; doi:10,1186/14712202107.

    Google Scholar 

  25. Yan J, Chen C, Hu Q, Yang X, Lei J, Yang Let al., The role of p53 in brain edema after 24 h of experimental subarachnoid hemorrhage in a rat model. Exp Neurol. 2008;214:37–46.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang F, Yin W, Chen J. Apoptosis in cerebral ischemia: executional and regulatory signaling mechanisms. Neurol Res. 2004;26:835–45.

    Article  PubMed  CAS  Google Scholar 

  27. Hemmings BA. Akt signaling: linking membrane events to life and death decisions. Science 1997;275:628–30.

    Article  PubMed  CAS  Google Scholar 

  28. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem. 2000;275:10761–6.

    Article  PubMed  CAS  Google Scholar 

  29. Hasegawa Y, Hamada J, Morioka M, Yano S, Kawano T, Kai Yet al., Neuroprotective effect of postischemic administration of sodium orthovanadate in rats with transient middle cerebral artery occlusion. J Cereb Blood Flow Metab. 2003;23:1040–51.

    Article  PubMed  CAS  Google Scholar 

  30. Hasegawa Y, Morioka M, Hasegawa S, Matsumoto J, Kawano T, Kai Y et al. Therapeutic time window and dose dependence of neuroprotective effects of sodium orthovanadate following transient middle cerebral artery occlusion in rats. J Pharmacol Exp Ther. 2006;317:875–81.

    Article  PubMed  CAS  Google Scholar 

  31. Shioda N, Ishigami T, Han F, Moriguchi S, Shibuya M, Iwabuchi Y et al. Activation of phosphatidylinositol 3-kinase/protein kinase B pathway by a vanadyl compound mediates its neuroprotective effect in mouse brain ischemia. Neuroscience 2007;148:221–9.

    Article  PubMed  CAS  Google Scholar 

  32. Endo H, Nito C, Kamada H, Yu F, Chan PH. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J Cereb Blood Flow Metab. 2007;27:975–82.

    PubMed  CAS  Google Scholar 

  33. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24:916–25.

    Article  PubMed  CAS  Google Scholar 

  34. Irving EA, Bamford M. Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab. 2002;22:631–47.

    Article  PubMed  CAS  Google Scholar 

  35. Chakraborti S, Chakraborti T. Oxidant-mediated activation of mitogen-activated protein kinases and nuclear transcription factors in the cardiovascular system: a brief overview. Cell Signal. 1988;10:675–83.

    Article  Google Scholar 

  36. Chow J, Ogunshola O, Fan SY, Li Y, Ment LR, Madri JA. Astrocyte-derived VEGF mediates survival and tube stabilization of hypoxic brain microvascular endothelial cells in vitro. Brain Res Dev Brain Res. 2001;130:123–32.

    Article  PubMed  CAS  Google Scholar 

  37. Parker LC, Luheshi GN, Rothwell NJ, Pinteaux E. IL-1 beta signalling in glial cells in wildtype and IL-1RI deficient mice. Br J Pharmacol. 2002;136:312–20.

    Article  PubMed  CAS  Google Scholar 

  38. Sugden PH, Clerk A. “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 1998;83:345–52.

    Article  PubMed  CAS  Google Scholar 

  39. Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki H, Jadhav V, Nishizawa Set al., Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke 2009;40:2519–25.

    Article  PubMed  CAS  Google Scholar 

  40. Yatsushige H, Ostrowski RP, Tsubokawa T, Colohan A, Zhang JH. Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J Neurosci Res. 2007;85:1436–48.

    Article  PubMed  CAS  Google Scholar 

  41. Sawe N, Steinberg G, Zhao H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res. 2008;86:1659–69.

    Article  PubMed  CAS  Google Scholar 

  42. Fassbender K, Hodapp B, Rossol S, Bertsch T, Schmeck J, Schütt Set al., Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry. 2001;70:534–7.

    Article  PubMed  CAS  Google Scholar 

  43. Hirashima Y, Nakamura S, Endo S, Kuwayama N, Naruse Y, Takaku A. Elevation of platelet activating factor, inflammatory cytokines, and coagulation factors in the internal jugular vein of patients with subarachnoid hemorrhage. Neurochem Res. 1997;22:1249–55.

    Article  PubMed  CAS  Google Scholar 

  44. Kuan CY, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong Cet al., A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci USA. 2003;100:15184–9.

    Article  PubMed  CAS  Google Scholar 

  45. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 2000;407:802–9.

    Article  PubMed  CAS  Google Scholar 

  46. Harada S, Kamiya K, Masago A, Iwata A, Yamada K. Subarachnoid hemorrhage induces c-fos, c-jun and hsp70 mRNA expression in rat brain. Neuroreport 1997;8:3399–404.

    Article  PubMed  CAS  Google Scholar 

  47. Kawamura Y, Yamada K, Masago A, Katano H, Matsumoto T, Mase M. Hypothermia modulates induction of hsp70 and c-jun mRNA in the rat brain after subarachnoid hemorrhage. J Neurotrauma. 2000;17:243–50.

    Article  PubMed  CAS  Google Scholar 

  48. Cheng A, Chan SL, Milhavet O, Wang S, Mattson MP. p38 MAP kinase mediates nitric oxide-induced apoptosis of neural progenitor cells. J Biol Chem. 2001;276:43320–7.

    Article  PubMed  CAS  Google Scholar 

  49. Nito C, Kamada H, Endo H, Niizuma K, Myer DJ, Chan PH. Role of the p38 mitogen-activated protein kinase/cytosolic phospholipase A2 signaling pathway in blood-brain barrier disruption after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab. 2008;28:1686–96.

    Article  PubMed  CAS  Google Scholar 

  50. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    Article  PubMed  CAS  Google Scholar 

  51. Cho BB, Toledo-Pereyra LH. Caspase-independent programmed cell death following ischemic stroke. J Invest Surg. 2008;21:141–7.

    Article  PubMed  Google Scholar 

  52. Li X, Nemoto M, Xu Z, Yu SW, Shimoji M, Andrabi SA, et al. Influence of duration of focal cerebral ischemia and neuronal nitric oxide synthase on translocation of apoptosis-inducing factor to the nucleus. Neuroscience 2007;144:56–65.

    Article  PubMed  CAS  Google Scholar 

  53. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJet al., Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 2002;297:200–1.

    Article  Google Scholar 

  54. Loh KP, Huang SH, De Silva R, Tan BK, Zhu YZ. Oxidative stress: apoptosis in neuronal injury. Curr Alzheimer Res. 2006;3:327–37.

    Article  PubMed  CAS  Google Scholar 

  55. Sugawara T, Chan PH. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal. 2003;5:597–607.

    Article  PubMed  CAS  Google Scholar 

  56. Ayer RE, Zhang JH. Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir Suppl. 2008;104:33–41.

    Article  PubMed  CAS  Google Scholar 

  57. Asano T. Oxyhemoglobin as the principal cause of cerebral vasospasm: a holistic view of its actions. Crit Rev Neurosurg. 1999;9:303–18.

    Article  PubMed  Google Scholar 

  58. Gaetani P, Lombardi D. Brain damage following subarachnoid hemorrhage: the imbalance between anti-oxidant systems and lipid peroxidative processes. J Neurosurg Sci. 1992;36:1–10.

    PubMed  CAS  Google Scholar 

  59. Kaynar MY, Tanriverdi T, Kemerdere R, Atukeren P, Gumustas K. Cerebrospinal fluid superoxide dismutase and serum malondialdehyde levels in patients with aneurysmal subarachnoid hemorrhage: preliminary results. Neurol Res. 2005;27:562–7.

    Article  PubMed  CAS  Google Scholar 

  60. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene 2003;22:9030–40.

    Article  PubMed  CAS  Google Scholar 

  61. Culmsee C, Mattson MP. p53 in neuronal apoptosis. Biochem Biophys Res Commun. 2005;331:761–77.

    Article  PubMed  CAS  Google Scholar 

  62. Cahill J, Calvert JW, Marcantonio S, Zhang JH. p53 may play an orchestrating role in apoptotic cell death after experimental subarachnoid hemorrhage. Neurosurgery 2007;60:531–45

    Article  PubMed  Google Scholar 

  63. Gao C, Liu X, Liu W, Shi H, Zhao Z, Chen Het al., Anti-apoptotic and neuroprotective effects of Tetramethylpyrazine following subarachnoid hemorrhage in rats. Auton Neurosci. 2008;141:22–30.

    Article  PubMed  CAS  Google Scholar 

  64. Martin-Villalba A, Herr I, Jeremias I, Hahne M, Brandt R, Vogel J et al. CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J Neurosci. 1999;19:3809–17.

    PubMed  CAS  Google Scholar 

  65. Rosenbaum DM, Gupta G, D’Amore J, Singh M, Weidenheim K, Zhang Het al., Fas (CD95/APO-1) plays a role in the pathophysiology of focal cerebral ischemia. J Neurosci Res. 2000;61:686–92.

    Article  PubMed  CAS  Google Scholar 

  66. Yuan J, Horvitz HR. A first insight into the molecular mechanisms of apoptosis. Cell 2004;116(Suppl):53–6

    Article  Google Scholar 

  67. Kawano T, Morioka M, Yano S, Hamada J, Ushio Y, Miyamoto E et al. Decreased akt activity is associated with activation of forkhead transcription factor after transient forebrain ischemia in gerbil hippocampus. J Cereb Blood Flow Metab. 2002;22:926–34.

    Article  PubMed  CAS  Google Scholar 

  68. Ma CX, Yin WN, Cai BW, He M, Wu J, Wang JY, et al. Activation of TLR4/NF-kappaB signaling pathway in early brain injury after subarachnoid hemorrhage. Neurol Res. doi:10,1179/016164109x12445616596283.

    Google Scholar 

  69. Ostrowski RP, Colohan AR, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005;25:554–71.

    Article  PubMed  CAS  Google Scholar 

  70. Ostrowski RP, Tang J, Zhang JH. Hyperbaric oxygen suppresses NADPH oxidase in a rat subarachnoid hemorrhage model. Stroke 2006;37:1314–8.

    Article  PubMed  CAS  Google Scholar 

  71. Sugawara T, Jadhav V, Ayer R, Chen W, Suzuki H, Zhang JH. Thrombin inhibition by argatroban ameliorates early brain injury and improves neurological outcomes after experimental subarachnoid hemorrhage in rats. Stroke 2009;40:1530–2.

    Article  PubMed  Google Scholar 

  72. Ersahin M, Toklu HZ, Cetinel S, Yüksel M, Yeğen BC, Sener G. Melatonin reduces experimental subarachnoid hemorrhage-induced oxidative brain damage and neurological symptoms. J Pineal Res. 2009;46:324–32.

    Article  PubMed  CAS  Google Scholar 

  73. Lu H, Zhang DM, Chen HL, Lin YX, Hang CH, Yin HX, et al. N-acetylcysteine suppresses oxidative stress in experimental rats with subarachnoid hemorrhage. J Clin Neurosci. 2009;16:684–8.

    Article  PubMed  CAS  Google Scholar 

  74. Lin CL, Dumont AS, Tsai YJ, Huang JH, Chang KP, Kwan AL, et al. 17beta-estradiol activates adenosine A(2a) receptor after subarachnoid hemorrhage. J Surg Res. doi:10,3171/20093JNS081660.

    Google Scholar 

Download references

Acknowledgments

This study was partially supported by grants (NS053407) from the National Institutes of Health to J.H.Z.

Conflict of interest statement We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this paper

Cite this paper

Hasegawa, Y., Suzuki, H., Sozen, T., Altay, O., Zhang, J.H. (2011). Apoptotic Mechanisms for Neuronal Cells in Early Brain Injury After Subarachnoid Hemorrhage. In: Feng, H., Mao, Y., Zhang, J.H. (eds) Early Brain Injury or Cerebral Vasospasm. Acta Neurochirurgica Supplements, vol 110/1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0353-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0353-1_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0352-4

  • Online ISBN: 978-3-7091-0353-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics