Skip to main content

Lymphatic Vessels in the Development of Tissue and Organ Rejection

  • Chapter
  • First Online:
Developmental Aspects of the Lymphatic Vascular System

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 214))

Abstract

The lymphatic vascular system—amongst other tasks—is critically involved in the regulation of adaptive immune responses as it provides an important route for APC trafficking to secondary lymphatic organs. In this context, the cornea, which is the transparent and physiologically avascular “windscreen” of the eye, has served as an excellent in vivo model to study the role of the blood and lymphatic vasculature in mediating allogenic immune responses after transplantation. Especially the mouse model of high-risk corneal transplantation, where corneal avascularity is abolished by a severe inflammatory stimulus prior to keratoplasty, allows for comparison to other transplantations performed in primarily vascularized tissues and solid organs. Using this model, we recently demonstrated that especially lymphatic vessels, but not blood vessels, define the high-risk status of vascularized corneas and that anti(lymph)angiogenic treatment significantly promotes corneal allograft survival. Since evidence for lymphangiogenesis and its potential association with graft rejection is nowadays also present in solid organ transplantation, studies are currently addressing the potential benefits of anti(lymph)angiogenic treatment as a novel therapeutic concept also in solid organ grafting with promising initial results.

All authors declare no financial disclosures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzali, B., Lombardi, G., & Lechler, R. I. (2008). Pathways of major histocompatibility complex allorecognition. Current Opinion in Organ Transplantation, 13, 438–444.

    Article  PubMed  Google Scholar 

  • Albuquerque, R. J., Hayashi, T., Cho, W. G., Kleinman, M. E., Dridi, S., Takeda, A., et al. (2009). Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nature Medicine, 15, 1023–1030.

    Article  PubMed  CAS  Google Scholar 

  • Alitalo, K. (2011). The lymphatic vasculature in disease. Nature Medicine, 17, 1371–1380.

    Article  PubMed  CAS  Google Scholar 

  • Alitalo, K., Tammela, T., & Petrova, T. V. (2005). Lymphangiogenesis in development and human disease. Nature, 438, 946–953.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, D., Vollmann, E. H., & von Andrian, U. H. (2008). Mechanisms and consequences of dendritic cell migration. Immunity, 29, 325–342.

    Article  PubMed  CAS  Google Scholar 

  • Ambati, B. K., Nozaki, M., Singh, N., Takeda, A., Jani, P. D., Suthar, T., et al. (2006). Corneal avascularity is due to soluble VEGF receptor-1. Nature, 443, 993–997.

    Article  PubMed  CAS  Google Scholar 

  • Andrieu-Soler, C., Berdugo, M., Doat, M., Courtois, Y., BenEzra, D., & Behar-Cohen, F. (2005). Downregulation of IRS-1 expression causes inhibition of corneal angiogenesis. Investigative Ophthalmology & Visual Science, 46, 4072–4078.

    Article  Google Scholar 

  • Armstrong, L. C., & Bornstein, P. (2003). Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biology, 22, 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Azar, D. T. (2006). Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Transactions of the American Ophthalmological Society, 104, 264–302.

    PubMed  Google Scholar 

  • Bachmann, B. O., Bock, F., Wiegand, S. J., Maruyama, K., Dana, M. R., Kruse, F. E., et al. (2008). Promotion of graft survival by vascular endothelial growth factor a neutralization after high-risk corneal transplantation. Archives of Ophthalmology, 126, 71–77.

    Article  PubMed  Google Scholar 

  • Bachmann, B. O., Luetjen-Drecoll, E., Bock, F., Wiegand, S. J., Hos, D., Dana, R., et al. (2009). Transient postoperative vascular endothelial growth factor (VEGF)-neutralisation improves graft survival in corneas with partly regressed inflammatory neovascularisation. The British Journal of Ophthalmology, 93, 1075–1080.

    Article  PubMed  CAS  Google Scholar 

  • Bock, F., Konig, Y., Kruse, F., Baier, M., & Cursiefen, C. (2008a). Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefe's Archive for Clinical and Experimental Ophthalmology, 246, 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Bock, F., Maruyama, K., Regenfuss, B., Hos, D., Steven, P., Heindl, L. M., et al. (2013). Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases. Progress in Retinal and Eye Research, 34, 89–124.

    Article  PubMed  CAS  Google Scholar 

  • Bock, F., Onderka, J., Dietrich, T., Bachmann, B., Kruse, F. E., Paschke, M., et al. (2007). Bevacizumab as a potent inhibitor of inflammatory corneal angiogenesis and lymphangiogenesis. Investigative Ophthalmology & Visual Science, 48, 2545–2552.

    Article  Google Scholar 

  • Bock, F., Onderka, J., Dietrich, T., Bachmann, B., Pytowski, B., & Cursiefen, C. (2008b). Blockade of VEGFR3-signalling specifically inhibits lymphangiogenesis in inflammatory corneal neovascularisation. Graefe's Archive for Clinical and Experimental Ophthalmology, 246, 115–119.

    Article  PubMed  CAS  Google Scholar 

  • Cera, M. R., Del Prete, A., Vecchi, A., Corada, M., Martin-Padura, I., Motoike, T., et al. (2004). Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. The Journal of Clinical Investigation, 114, 729–738.

    PubMed  CAS  Google Scholar 

  • Chen, L., Hamrah, P., Cursiefen, C., Zhang, Q., Pytowski, B., Streilein, J. W., et al. (2004). Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nature Medicine, 10, 813–815.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, S. F., Dastjerdi, M. H., Ferrari, G., Okanobo, A., Bower, K. S., Ryan, D. S., et al. (2012). Short-term topical bevacizumab in the treatment of stable corneal neovascularization. American Journal of Ophthalmology, 154(940–948), e941.

    Google Scholar 

  • Cursiefen, C. (2007). Immune privilege and angiogenic privilege of the cornea. Chemical Immunology and Allergy, 92, 50–57.

    Article  PubMed  CAS  Google Scholar 

  • Cursiefen, C., Bock, F., Horn, F. K., Kruse, F. E., Seitz, B., Borderie, V., et al. (2009). GS-101 antisense oligonucleotide eye drops inhibit corneal neovascularization: Interim results of a randomized phase II trial. Ophthalmology, 116, 1630–1637.

    Article  PubMed  Google Scholar 

  • Cursiefen, C., Cao, J., Chen, L., Liu, Y., Maruyama, K., Jackson, D., et al. (2004a). Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Investigative Ophthalmology & Visual Science, 45, 2666–2673.

    Article  Google Scholar 

  • Cursiefen, C., Chen, L., Borges, L. P., Jackson, D., Cao, J., Radziejewski, C., et al. (2004b). VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. The Journal of Clinical Investigation, 113, 1040–1050.

    PubMed  CAS  Google Scholar 

  • Cursiefen, C., Chen, L., Dana, M. R., & Streilein, J. W. (2003). Corneal lymphangiogenesis: Evidence, mechanisms, and implications for corneal transplant immunology. Cornea, 22, 273–281.

    Article  PubMed  Google Scholar 

  • Cursiefen, C., Chen, L., Saint-Geniez, M., Hamrah, P., Jin, Y., Rashid, S., et al. (2006a). Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proceedings of the National Academy of Sciences of the United States of America, 103, 11405–11410.

    Article  PubMed  CAS  Google Scholar 

  • Cursiefen, C., Kuchle, M., & Naumann, G. O. (1998). Angiogenesis in corneal diseases: Histopathologic evaluation of 254 human corneal buttons with neovascularization. Cornea, 17, 611–613.

    Article  PubMed  CAS  Google Scholar 

  • Cursiefen, C., Martus, P., Nguyen, N. X., Langenbucher, A., Seitz, B., & Kuchle, M. (2002a). Corneal neovascularization after nonmechanical versus mechanical corneal trephination for non-high-risk keratoplasty. Cornea, 21, 648–652.

    Article  PubMed  Google Scholar 

  • Cursiefen, C., Maruyama, K., Bock, F., Saban, D., Sadrai, Z., Lawler, J., et al. (2011). Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes. The Journal of Experimental Medicine, 208, 1083–1092.

    Article  PubMed  CAS  Google Scholar 

  • Cursiefen, C., Maruyama, K., Jackson, D. G., Streilein, J. W., & Kruse, F. E. (2006b). Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea, 25, 443–447.

    Article  PubMed  Google Scholar 

  • Cursiefen, C., Masli, S., Ng, T. F., Dana, M. R., Bornstein, P., Lawler, J., et al. (2004c). Roles of thrombospondin-1 and -2 in regulating corneal and iris angiogenesis. Investigative Ophthalmology & Visual Science, 45, 1117–1124.

    Article  Google Scholar 

  • Cursiefen, C., Schlotzer-Schrehardt, U., Kuchle, M., Sorokin, L., Breiteneder-Geleff, S., Alitalo, K., et al. (2002b). Lymphatic vessels in vascularized human corneas: Immunohistochemical investigation using LYVE-1 and podoplanin. Investigative Ophthalmology & Visual Science, 43, 2127–2135.

    Google Scholar 

  • Cursiefen, C., Wenkel, H., Martus, P., Langenbucher, A., Nguyen, N. X., Seitz, B., et al. (2001). Impact of short-term versus long-term topical steroids on corneal neovascularization after non-high-risk keratoplasty. Graefe's Archive for Clinical and Experimental Ophthalmology, 239, 514–521.

    Article  PubMed  CAS  Google Scholar 

  • Dana, M. R. (2006). Angiogenesis and lymphangiogenesis-implications for corneal immunity. Seminars in Ophthalmology, 21, 19–22.

    Article  PubMed  Google Scholar 

  • Dana, M. R., Schaumberg, D. A., Kowal, V. O., Goren, M. B., Rapuano, C. J., Laibson, P. R., et al. (1995). Corneal neovascularization after penetrating keratoplasty. Cornea, 14, 604–609.

    PubMed  CAS  Google Scholar 

  • Dana, M. R., & Streilein, J. W. (1996). Loss and restoration of immune privilege in eyes with corneal neovascularization. Investigative Ophthalmology & Visual Science, 37, 2485–2494.

    CAS  Google Scholar 

  • Dashkevich, A., Heilmann, C., Kayser, G., Germann, M., Beyersdorf, F., Passlick, B., et al. (2010). Lymph angiogenesis after lung transplantation and relation to acute organ rejection in humans. The Annals of Thoracic Surgery, 90, 406–411.

    Article  PubMed  Google Scholar 

  • Dietrich, T., Bock, F., Yuen, D., Hos, D., Bachmann, B. O., Zahn, G., et al. (2010). Cutting edge: Lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. Journal of Immunology, 184, 535–539.

    Article  CAS  Google Scholar 

  • Dietrich, T., Onderka, J., Bock, F., Kruse, F. E., Vossmeyer, D., Stragies, R., et al. (2007). Inhibition of inflammatory lymphangiogenesis by integrin alpha5 blockade. The American Journal of Pathology, 171, 361–372.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, G., Dastjerdi, M. H., Okanobo, A., Cheng, S. F., Amparo, F., Nallasamy, N., et al. (2013). Topical ranibizumab as a treatment of corneal neovascularization. Cornea, 32(7), 992–997.

    Article  PubMed  Google Scholar 

  • Forster, R., Davalos-Misslitz, A. C., & Rot, A. (2008). CCR7 and its ligands: Balancing immunity and tolerance. Nature Reviews. Immunology, 8, 362–371.

    Article  PubMed  Google Scholar 

  • Forster, R., Schubel, A., Breitfeld, D., Kremmer, E., Renner-Muller, I., Wolf, E., et al. (1999). CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell, 99, 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Gould, D. S., & Auchincloss, H., Jr. (1999). Direct and indirect recognition: The role of MHC antigens in graft rejection. Immunology Today, 20, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Hos, D., Bachmann, B., Bock, F., Onderka, J., & Cursiefen, C. (2008a). Age-related changes in murine limbal lymphatic vessels and corneal lymphangiogenesis. Experimental Eye Research, 87, 427–432.

    Article  PubMed  CAS  Google Scholar 

  • Hos, D., Bock, F., Dietrich, T., Onderka, J., Kruse, F. E., Thierauch, K. H., et al. (2008b). Inflammatory corneal (lymph)angiogenesis is blocked by VEGFR-tyrosine kinase inhibitor ZK 261991, resulting in improved graft survival after corneal transplantation. Investigative Ophthalmology & Visual Science, 49, 1836–1842.

    Article  Google Scholar 

  • Hos, D., Regenfuss, B., Bock, F., & Cursiefen, C. (2011). Blockade of insulin receptor substrate-1 inhibits corneal lymphangiogenesis. Investigative Ophthalmology & Visual Science, 52, 5778–5785.

    Article  CAS  Google Scholar 

  • Ishii, E., Shimizu, A., Kuwahara, N., Arai, T., Kataoka, M., Wakamatsu, K., et al. (2010). Lymphangiogenesis associated with acute cellular rejection in rat liver transplantation. Transplantation Proceedings, 42, 4282–4285.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, L. A., Clasper, S., Holt, A. P., Lalor, P. F., Baban, D., & Jackson, D. G. (2006). An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. The Journal of Experimental Medicine, 203, 2763–2777.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, L. A., & Jackson, D. G. (2010). Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration. International Immunology, 22, 839–849.

    Article  PubMed  CAS  Google Scholar 

  • Källskog, O., Kampf, C., Andersson, A., Carlsson, P. O., Hansell, P., Johansson, M., et al. (2006). Lymphatic vessels in pancreatic islets implanted under the renal capsule of rats. American Journal of Transplantation, 6, 680–686.

    Article  PubMed  Google Scholar 

  • Karpanen, T., & Alitalo, K. (2008). Molecular biology and pathology of lymphangiogenesis. Annual Review of Pathology, 3, 367–397.

    Article  PubMed  CAS  Google Scholar 

  • Kerjaschki, D., Huttary, N., Raab, I., Regele, H., Bojarski-Nagy, K., Bartel, G., et al. (2006). Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nature Medicine, 12, 230–234.

    Article  PubMed  CAS  Google Scholar 

  • Kerjaschki, D., Regele, H. M., Moosberger, I., Nagy-Bojarski, K., Watschinger, B., Soleiman, A., et al. (2004). Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. Journal of the American Society of Nephrology, 15, 603–612.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, Y., Bock, F., Kruse, F. E., Stock, K., & Cursiefen, C. (2012). Angioregressive pretreatment of mature corneal blood vessels before keratoplasty: Fine-needle vessel coagulation combined with anti-VEGFs. Cornea, 31, 887–892.

    Article  PubMed  Google Scholar 

  • Lakkis, F. G., Arakelov, A., Konieczny, B. T., & Inoue, Y. (2000). Immunologic “ignorance” of vascularized organ transplants in the absence of secondary lymphoid tissue. Nature Medicine, 6, 686–688.

    Article  PubMed  CAS  Google Scholar 

  • Lin, H. C., Chang, J. H., Jain, S., Gabison, E. E., Kure, T., Kato, T., et al. (2001). Matrilysin cleavage of corneal collagen type XVIII NC1 domain and generation of a 28-kDa fragment. Investigative Ophthalmology & Visual Science, 42, 2517–2524.

    CAS  Google Scholar 

  • Lindquist, R. L., Shakhar, G., Dudziak, D., Wardemann, H., Eisenreich, T., Dustin, M. L., et al. (2004). Visualizing dendritic cell networks in vivo. Nature Immunology, 5, 1243–1250.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z., Colovai, A. I., Tugulea, S., Reed, E. F., Fisher, P. E., Mancini, D., et al. (1996). Indirect recognition of donor HLA-DR peptides in organ allograft rejection. The Journal of Clinical Investigation, 98, 1150–1157.

    Article  PubMed  CAS  Google Scholar 

  • Luther, S. A., Tang, H. L., Hyman, P. L., Farr, A. G., & Cyster, J. G. (2000). Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proceedings of the National Academy of Sciences of the United States of America, 97, 12694–12699.

    Article  PubMed  CAS  Google Scholar 

  • Makino, Y., Cao, R., Svensson, K., Bertilsson, G., Asman, M., Tanaka, H., et al. (2001). Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature, 414, 550–554.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Corral, I., Olmeda, D., Dieguez-Hurtado, R., Tammela, T., Alitalo, K., & Ortega, S. (2012). In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis. Proceedings of the National Academy of Sciences of the United States of America, 109, 6223–6228.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Fontecha, A., Sebastiani, S., Hopken, U. E., Uguccioni, M., Lipp, M., Lanzavecchia, A., et al. (2003). Regulation of dendritic cell migration to the draining lymph node: Impact on T lymphocyte traffic and priming. The Journal of Experimental Medicine, 198, 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, K., Ii, M., Cursiefen, C., Jackson, D. G., Keino, H., Tomita, M., et al. (2005). Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. The Journal of Clinical Investigation, 115, 2363–2372.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, S., Zandi, S., Faez, S., Kohno, R., & Hafezi-Moghadam, A. (2012). Discontinuous LYVE-1 expression in corneal limbal lymphatics: Dual function as microvalves and immunological hot spots. FASEB Journal, 26, 808–817.

    Article  PubMed  CAS  Google Scholar 

  • Niederkorn, J. Y. (2010). High-risk corneal allografts and why they lose their immune privilege. Current Opinion in Allergy and Clinical Immunology, 10, 493–497.

    Article  PubMed  Google Scholar 

  • Nykänen, A. I., Sandelin, H., Krebs, R., Keranen, M. A., Tuuminen, R., Karpanen, T., et al. (2010). Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts. Circulation, 121, 1413–1422.

    Article  PubMed  Google Scholar 

  • Ohl, L., Mohaupt, M., Czeloth, N., Hintzen, G., Kiafard, Z., Zwirner, J., et al. (2004). CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity, 21, 279–288.

    Article  PubMed  CAS  Google Scholar 

  • Palin, N. K., Savikko, J., & Koskinen, P. K. (2013). Sirolimus inhibits lymphangiogenesis in rat renal allografts, a novel mechanism to prevent chronic kidney allograft injury. Transplant International, 26, 195–205.

    Article  PubMed  CAS  Google Scholar 

  • Philipp, W., Speicher, L., & Humpel, C. (2000). Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Investigative Ophthalmology & Visual Science, 41, 2514–2522.

    CAS  Google Scholar 

  • Pietra, B. A., Wiseman, A., Bolwerk, A., Rizeq, M., & Gill, R. G. (2000). CD4 T cell-mediated cardiac allograft rejection requires donor but not host MHC class II. The Journal of Clinical Investigation, 106, 1003–1010.

    Article  PubMed  CAS  Google Scholar 

  • Potente, M., Gerhardt, H., & Carmeliet, P. (2011). Basic and therapeutic aspects of angiogenesis. Cell, 146, 873–887.

    Article  PubMed  CAS  Google Scholar 

  • Randolph, G. J., Angeli, V., & Swartz, M. A. (2005). Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nature Reviews. Immunology, 5, 617–628.

    Article  PubMed  CAS  Google Scholar 

  • Regenfuss, B., Onderka, J., Bock, F., Hos, D., Maruyama, K., & Cursiefen, C. (2010). Genetic heterogeneity of lymphangiogenesis in different mouse strains. The American Journal of Pathology, 177, 501–510.

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal, R., Mebius, R. E., & Kraal, G. (2008). The conduit system of the lymph node. International Immunology, 20, 1483–1487.

    Article  PubMed  CAS  Google Scholar 

  • Salmi, M., & Jalkanen, S. (2005). Cell-surface enzymes in control of leukocyte trafficking. Nature Reviews. Immunology, 5, 760–771.

    Article  PubMed  CAS  Google Scholar 

  • Salven, P., Mustjoki, S., Alitalo, R., Alitalo, K., & Rafii, S. (2003). VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood, 101, 168–172.

    Article  PubMed  CAS  Google Scholar 

  • Sano, Y., Ksander, B. R., & Streilein, J. W. (1995). Fate of orthotopic corneal allografts in eyes that cannot support anterior chamber-associated immune deviation induction. Investigative Ophthalmology & Visual Science, 36, 2176–2185.

    CAS  Google Scholar 

  • Singh, N., Tiem, M., Watkins, R., Cho, Y. K., Wang, Y., Olsen, T., et al. (2013). Soluble vascular endothelial growth factor receptor-3 is essential for corneal alymphaticity. Blood, 121(20), 4242–4249.

    Article  PubMed  CAS  Google Scholar 

  • Steven, P., Bock, F., Huttmann, G., & Cursiefen, C. (2011). Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels. PloS One, 6, e26253.

    Article  PubMed  CAS  Google Scholar 

  • Streilein, J. W., Yamada, J., Dana, M. R., & Ksander, B. R. (1999). Anterior chamber-associated immune deviation, ocular immune privilege, and orthotopic corneal allografts. Transplantation Proceedings, 31, 1472–1475.

    Article  PubMed  CAS  Google Scholar 

  • Tammela, T., & Alitalo, K. (2010). Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 140, 460–476.

    Article  PubMed  CAS  Google Scholar 

  • Truong, T., Altiok, E., Yuen, D., Ecoiffier, T., & Chen, L. (2011). Novel characterization of lymphatic valve formation during corneal inflammation. PloS One, 6, e21918.

    Article  PubMed  CAS  Google Scholar 

  • Xi, X., McMillan, D. H., Lehmann, G. M., Sime, P. J., Libby, R. T., Huxlin, K. R., et al. (2011). Ocular fibroblast diversity: Implications for inflammation and ocular wound healing. Investigative Ophthalmology & Visual Science, 52, 4859–4865.

    Article  CAS  Google Scholar 

  • Yamagami, S., & Dana, M. R. (2001). The critical role of lymph nodes in corneal alloimmunization and graft rejection. Investigative Ophthalmology & Visual Science, 42, 1293–1298.

    CAS  Google Scholar 

  • Yamagami, S., Dana, M. R., & Tsuru, T. (2002). Draining lymph nodes play an essential role in alloimmunity generated in response to high-risk corneal transplantation. Cornea, 21, 405–409.

    Article  PubMed  Google Scholar 

  • Yin, N., Zhang, N., Xu, J., Shi, Q., Ding, Y., & Bromberg, J. S. (2011). Targeting lymphangiogenesis after islet transplantation prolongs islet allograft survival. Transplantation, 92, 25–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Birgit Regenfuss and Felix Bock (Department of Ophthalmology, University of Cologne) for helpful discussions and proofreading of the article. This work was supported by the German Research Foundation, Sonderforschungsbereich SFB 643 (B10), DFG Cu 47/4-1, and DFG Cu 47/6-1, and by the GEROK-Programme, University of Cologne (to DH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Cursiefen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Hos, D., Cursiefen, C. (2014). Lymphatic Vessels in the Development of Tissue and Organ Rejection. In: Kiefer, F., Schulte-Merker, S. (eds) Developmental Aspects of the Lymphatic Vascular System. Advances in Anatomy, Embryology and Cell Biology, vol 214. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1646-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1646-3_10

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1645-6

  • Online ISBN: 978-3-7091-1646-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics