Skip to main content

Clinical Approaches to Preserve β-Cell Function in Diabetes

  • Chapter
  • First Online:
Book cover The Islets of Langerhans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 654))

Abstract

In type 2 diabetes (DM2) there is progressive deterioration in β-cell function and mass. It was found that islet function was about 50% of normal at the time of diagnosis and reduction in β-cell mass of about 60% at necropsy (accelerated apoptosis). Among the interventions to preserve the β-cells, those to lead to short-term improvement of β-cell secretion are weight loss, metformin, sulfonylureas, and insulin. The long-term improvement was demonstrated with short-term intensive insulin therapy of newly diagnosed DM2, the use of antiapoptotic drugs such as glitazones, and the use of glucagon-like peptide-1 receptor agonists (GLP-1 mimetics), not inactivated by the enzyme dipeptidyl peptidase 4 and/or to inhibit that enzyme (GLP-1 enhancers). The incretin hormones are released from the gastrointestinal tract in response to nutrient ingestion to enhance glucose-dependent insulin secretion from the pancreas and overall maintenance of glucose homeostasis. From the two major incretins, GLP-1 and GIP (glucose-dependent insulinotropic polypeptide), only the first one or its mimetics or enhancers can be used for treatment. The GLP-1 mimetics exenatide and liraglutide as well as the DPP 4 inhibitors (sitagliptin and vildagliptin) were approved for treatment of DM2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AST:

Aspartate amino transferase

ALT:

alanine amino transferase

BMI:

body mass index

DM2:

type 2 diabetes mellitus

DPP4:

dipeptidyl peptidase 4

ER:

endoplasmic reticulum

FA:

fatty acid

FFA:

free fatty acid

GIP:

glucose-dependent insulinotropic polypeptide

GLP-1:

glucagon-like peptide-1

GLP-1R:

glucagon-like peptide-1 receptor

GLP-2:

glucagon-like peptide-2

HbA1c:

glycated hemoglobin

HOMA:

homeostasis model assessment

HOMA-βorB:

HOMA of β-cell function

IFG:

impaired fasting glucose

IGT:

impaired glucose tolerance

PI/IRIratio:

proinsulin to total immunoreactive insulin ratio

PPARγ:

peroxisome proliferator-activated receptor γ

ROS:

reactive oxygen species

References

  1. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–853.

    Article  Google Scholar 

  2. Holman RR. Long-term efficacy of sulfonylureas: a United Kingdom Prospective Diabetes Study perspective. Metabolism: 2006;55 (Suppl 1) S2–S5.

    Article  PubMed  CAS  Google Scholar 

  3. Wajchenberg BL. β-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 2007;28:187–218.

    Article  PubMed  CAS  Google Scholar 

  4. Holman RR. Assessing the potential for α-glucosidase inhibitors in prediabetic states. Diabetes Res Clin Pract 1998;40 (Suppl): S21–S25.

    Article  PubMed  CAS  Google Scholar 

  5. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 2003;52:102–10.

    Article  PubMed  CAS  Google Scholar 

  6. Henquin J-C, Cerasi E, Efendic S, Steiner DF, Boitard C. Pancreatic β-cell mass or β-cell function? Editorial. Diabetes Obes Metab 2008;10 (Suppl 4):1–4.

    Google Scholar 

  7. Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC. Pancreatic β-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 2008;10 (Suppl 4):32–42.

    Article  PubMed  Google Scholar 

  8. Poitout V, Robertson RP. Glucolipotoxicity: Fuel excess and β-Cell dysfunction. Endocr Rev 2008;29:351–66.

    Article  PubMed  CAS  Google Scholar 

  9. Aston-Mourney K, Proietto J, Morahan G, Andrikopoulos S. Too much of a good think: why it is bad to stimulate the beta cell to secrete insulin. Diabetologia 2008; 51:540–45.

    Article  PubMed  CAS  Google Scholar 

  10. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Bush AK, Biankin AV, Biden TJ. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 2007; 50:752–63.

    Article  PubMed  CAS  Google Scholar 

  11. Gumbiner B, Polonsky KS, Beltz WF, Griver K, Wallace P, Brechtel G, Henry RR. Effects of weight loss and reduced hyperglycemia on the kinetics of insulin secretion in obese non-insulin dependent diabetes mellitus. J Clin Endocrinol Metab 1990; 70:1594–602.

    Article  PubMed  CAS  Google Scholar 

  12. Wu MS, Johnston P, Sheu WH, Hollenbeck CB, Jeng CY, Goldfine ID, Chen YD, Reaven GM. Effect of metformin on carbohydrate and lipoprotein metabolism in NIDDM patients. Diabetes Care 1990;13:1–8.

    Article  PubMed  CAS  Google Scholar 

  13. Shapiro ET, Van Cauter E, Tillil H, Given BD, Hirsch L, Beebe C, Rubenstein AH, Polonsky KS. Glyburide enhances the responsiveness of the beta-cell to glucose but does not correct the abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1989;69:571–6.

    Article  PubMed  CAS  Google Scholar 

  14. UK Prospective Diabetes Study 16. Overview of 6 years therapy of type II diabetes: a progressive disease. Diabetes 1995;44:1249–58.

    Article  Google Scholar 

  15. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O’Neill C, Zinman B, Viberti G for the ADOPT (A Diabetes Outcome Progression Trial) Study Group: Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006;355:2427–43.

    Article  PubMed  CAS  Google Scholar 

  16. Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY. Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 90: 501–6,2005.

    Article  PubMed  CAS  Google Scholar 

  17. Garvey WT, Olefsky JM, Griffin J, Hamman RF, Kolterman OG. The effect of insulin treatment on insulin secretion and insulin action in type II diabetes mellitus. Diabetes 1985;34:222–34.

    Article  PubMed  CAS  Google Scholar 

  18. Glaser B, Leibovich G, Nesher R, Hartling S, Binder C, Cerasi E. Improved beta-cell function after intensive insulin treatment in severe non-insulin-dependent diabetes. Acta Endocrinol (Copenh) 1988;118:365–73.

    CAS  Google Scholar 

  19. Gormley MJ, Hadden DR, Woods R, Sheridan B, Andrews WJ. One month’s insulin treatment of type II diabetes: the early and medium-term effects following insulin withdrawal. Metabolism 1986;35:1029–36.

    Article  PubMed  CAS  Google Scholar 

  20. Ilkova H, Glaser B, Tunckale A, Bagriacik N, Cerasi E. Induction of long-term glycemic control in newly diagnosed type 2 diabetic patients by transient intensive insulin treatment. Diabetes Care 1997;20:1353–6.

    Article  PubMed  CAS  Google Scholar 

  21. Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999;48:2270–6.

    Article  PubMed  CAS  Google Scholar 

  22. Li Y, Hansotia Y, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon –like-peptide-1 receptor signaling modulates β-cell apoptosis. J Biol Chem 2003;278:471–8.

    Article  PubMed  CAS  Google Scholar 

  23. Baggio LL, Drucker DJ. Incretin hormones in the treatment of type 2 diabetes: therapeutic applications of DPP-IV inhibitors. Medscape Diabetes Endocrinol 2006;8:1–5.

    Google Scholar 

  24. Tseng YH, Ueki K, Kriauciunas KM, Kahn CR. Differential roles of insulin receptor substrates in the anti-apoptotic function of insulin-like growth factor-1 and insulin. J Biol Chem 2002;277:31601–11.

    Article  PubMed  CAS  Google Scholar 

  25. Dandona P, Chaudhuri A, Mohanty P, Ghanim H. Anti-inflammatory effects of insulin. Curr Opin Clin Nutr Metab Care 2007;10:511–7.

    Article  PubMed  CAS  Google Scholar 

  26. Retnakaran R, Drucker DJ. Intensive insulin therapy in newly diagnosed type 2 diabetes. Lancet 2008;371:1725–6.

    Article  PubMed  Google Scholar 

  27. Ryan EA, Imes S, Wallace C. Short-term intensive insulin therapy in newly diagnosed type 2 diabetes. Diabetes Care 2004;27:1028–32.

    Article  PubMed  CAS  Google Scholar 

  28. Li Y, Xu W, Liao Z, Yao B, Chen X, Huang Z, Hu G, Weng JP. Induction of long-term glycemic control in newly diagnosed type diabetic patients is associated with improvement of β-cell function. Diabetes Care 2004;27:2597–602.

    Article  PubMed  CAS  Google Scholar 

  29. Weng JP, Li Y, Xu W, Shi L, Zhang Q, Xhu D, Hu Y, Zhou Z, Yan X, Tian H, Ran X, Luo Z, Xian J, Yan L, Li F, Zeng L, Chen Y, Yang L, Yan S, Liu J, Li M, Fu Z, Cheng H. Effect of intensive insulin therapy on β-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes : a multicentre randomised parallel-group trial. Lancet 2008;371:1753–60.

    Article  PubMed  CAS  Google Scholar 

  30. Chen H-S, Wu T-E, Jap T-S, Hsiao L-C, Lee S-H, Lin H-D. Beneficial effects of insulin on glycemic control and β-cell function in newly diagnosed type 2 diabetes with severe hyperglycemia after short-term intensive insulin therapy. Diabetes Care 2008;31:1927–32.

    Article  PubMed  CAS  Google Scholar 

  31. Dubois M, Pattou F, Kerr-Conte J, Gmyr V, Vanderwalle B, Desreumaux P, Auswers J, Schoonjans K, Lefebvre J. Expression of peroxisome-proliferator –activated receptor γ (PPARγ) in normal human pancreatic islet cells. Diabetologia 2001;43:1165–9.

    Article  Google Scholar 

  32. Ovalle F, Bell DSH Effect of rosiglitazone versus insulin on the pancreatic β-cell function of subjects with type 2 diabetes. Diabetes Care 2004;27:2585–9.

    Article  PubMed  CAS  Google Scholar 

  33. Campbell JW. Long-term glycemic control with pioglitazone in patients with type 2 diabetes. Int J Clin Pract 2004;58:192–200.

    Article  PubMed  CAS  Google Scholar 

  34. Bell DSH, Ovalle F. Long-term efficacy of triple oral therapy for type 2 diabetes mellitus. Endocr Pract 2002;8:271–5.

    PubMed  Google Scholar 

  35. Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care 2003;26:2928–40.

    Article  Google Scholar 

  36. Theodorakis MJ, Carlson O, Michopoulos S, Doyle ME, Juhaszova M, Petraki K, Egan JM. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab 2006;290:E550–9.

    Article  PubMed  CAS  Google Scholar 

  37. Vollmer K, Holst JJ, Baller B, Ellrichmann M, Nauck MA, Schmidt WE, Meyer JJ. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 2008;57:678–87.

    Article  PubMed  CAS  Google Scholar 

  38. Chia CW, Egan JM. Incretin-based therapies in type 2 diabetes mellitus J Clin Endocrinol Metab 2008;93:3703–16.

    Article  PubMed  CAS  Google Scholar 

  39. Kjems LL, Holst JJ, Volund A, Madsbad. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003;52:380–6.

    Article  PubMed  CAS  Google Scholar 

  40. Nauck MA, Heimesaat MM, Orskow C, Holst JJ, Ebert R, Creutzfeldt. Preserved incretin activity of glucagon-like peptide 1[17–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type 2 diabetes mellitus. J Clin Invest 1993;91:301–7.

    Article  PubMed  CAS  Google Scholar 

  41. Muscelli E, Mari A, Casolaro A, Camastra S, Seghieri G, Gastaldelli A, Jolst JJ, Ferrannini E. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients Diabetes 2008; 57:1340–8.

    Article  PubMed  CAS  Google Scholar 

  42. Willms B, Idowu K, Holst JJ, Creutzfeldt W, Nauck MA. Overnight GLP-1 normalizes fasting but not daytime plasma glucose levels in NIDDM patients. Exp Clin Endocrinol Diabetes 1998; 106:103–7.

    Article  PubMed  CAS  Google Scholar 

  43. Deacon CF. Circulation and degradation of GIP and GLP-1. Horm Metab Res 2004; 36:761–5.

    Article  PubMed  CAS  Google Scholar 

  44. Agerso H, Jensen LB, Elbrond B, Rolan P, Zdravkovic M. The pharmacokinetic, pharmacodynamics, safety and tolerability of NN2211, a long-acting GLP-1 derivative, in healthy men. Diabetologia 2002;45:195–202.

    Article  PubMed  CAS  Google Scholar 

  45. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl-peptidase-4 inhibitors in type 2 diabetes. Lancet 2006;368:1696–705.

    Article  PubMed  CAS  Google Scholar 

  46. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA 2007;298:194–206.

    Article  PubMed  CAS  Google Scholar 

  47. Data on file : Lilly Research Laboratories, 2008.

    Google Scholar 

  48. de Vries JH. Is pancreatitis an adverse drug effect of GLP-1 receptor agonists? In: Advances in Glucagon-like peptides for the treatment of type 2 diabetes 2009; vol.3:9–13 (http://cme.medscape.com/view program/19082_pnt)

  49. Noel RA, Braun DK, Patterson RE, Bloomgren G. Increased risk of acute pancreatitis and biliary disease observed in patients with type 2 diabetes : a retrospective, cohort study. Diabetes Care 2009, Feb. 10 [Epub ahead of print].

    Google Scholar 

  50. Nauck MA, Hompesch M, Filipczak R, Le TD, Zdravkovic M, Gumprecht J. NN2211–1499 Study Group. Five weeks of treatment with the GLP-1 analogue: liraglutide improves glycaemic control and lowers body weight in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes 2006;114:417–23.

    Article  PubMed  CAS  Google Scholar 

  51. Visboll T, Zdravkovic M, Le. TD, Krarup T, Schmitz O, Courrèges JP, Verhoeven R, Bugánová I, Madsbad S. Liraglutide, a long-acting human Glucagon-like peptide-1 analog, given as monotherapy significantly improves glycemic control and lowers body weight with risk of hypoglycemia in patients with type 2 diabetes. Diabetes Care 2007;30:1608–10.

    Article  Google Scholar 

  52. Garber A, Henry R, Ratner R, Garcia-Hernandez PA, Rodriguez-Pattzi, Olvera-Alvarez I, Hale PM, Zdravkovic M, Bode B, for the LEAD-3 (Mono) Study Group. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomized, 52-week, phase III, double-blind, parallel-treatment trial. Lancet 373:473–81, 2009.

    Article  PubMed  CAS  Google Scholar 

  53. Marre M, Shaw J, Brandle M, Bebakar WM, Kamaruddin NA, Strand J, Zdravkovic M, Le-Thi TD, Colagiuri S; LEAD-1 SU Study Group. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements on glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med 2009; 26:268–78.

    Article  PubMed  CAS  Google Scholar 

  54. Nauck M, Frid A, Hermansen K, Shah NS, Tankova T, Mitha IH, Zdravkovic M, During M, Matthews DR, for the LEAD-2 Study Group. Efficacy and safety comparison of Liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes. Diabetes Care 2009; 32:84–90.

    Article  PubMed  CAS  Google Scholar 

  55. Zinman B, Gerich J, Buse J, Lewin A, Schwartz SL, Raskin P, Hale PM, Zdravkovic M, Blonde L. Effect of the GLP-1 analog liraglutide on glycemic control and weight reduction in patients on metformin and rosiglitazone: a randomized double-blind placebo-controlled trial. Diabetologia 2008; 51 (Suppl 1): A 898.

    Google Scholar 

  56. Russell-Jones D, Vaag A, Schmitz O, Sethi BK, Lalic N, Antic S, Zdravkovic M, Ravn GM, Simo R. Significantly better glycemic control and weight reduction with liraglutide, a once-daily human GLP-1 analog, compared with insulin glargine: all as add-on to metformin and a sulfonylurea in type 2 diabetes. Diabetes 2008;57 (Suppl 1): A 159.

    Google Scholar 

  57. Data on file, Novo-Nordisk.

    Google Scholar 

  58. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin –treated patients with type 2 diabetes. Diabetes Care 2005;28:1092–100.

    Article  PubMed  CAS  Google Scholar 

  59. Klonoff DC, Buse JB, Nielsen LL, Guan X, Bowlus CL, Holcombe JH, Wintle ME, Maggs DG. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin 2008;24: 275–86.

    PubMed  CAS  Google Scholar 

  60. Salehi M, Aulinger BA, D’Alessio DA. Targeting beta-cell mass in type 2 diabetes: Promise and limitations of new drugs based on incretins Endocr Rev 2008;29:357–79.

    Google Scholar 

  61. Dunning BE, Gerich JE. The role of α-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev 2007;28:253–83.

    Article  PubMed  CAS  Google Scholar 

  62. Knop FK, Visboll T, Madsbad S, Holst JJ, Krarup T. Inappropriate suppression of glucagon during OGTT but not during isoglycemic i.v. glucose infusion contributes to the reduce incretin effect in type 2 diabetes mellitus. Diabetologia 2007;50:797–805.

    Article  PubMed  CAS  Google Scholar 

  63. Meier JJ, Deacon CF, Schmidt WE, Holst JJ, Nauck MA. Suppression of glucagon secretion is lower after oral glucose administration than during intravenous glucose administration in human subjects. Diabetologia 2007;50:806–13.

    Article  PubMed  CAS  Google Scholar 

  64. Nauck MA, El-Ouaghlidi A. The therapeutic actions of DPP-IV inhibition are not mediated by glucagon-like peptide-1. Diabetologia 2005;48:608–11.

    Article  PubMed  Google Scholar 

  65. Ahrén B. Sensory nerves contribute to insulin secretion by glucagon-like peptide-1 (GLP-1) in mice. Am J Physiol Regul Integr Comp Physiol 2004;286:R269–2.

    Article  PubMed  Google Scholar 

  66. Bergman AJ, Stevens C, Zhou Y, Yi B, Laethem M, De Smet M, Snyder K, Hilliard D, Tanaka W, Zeng W, Tanen M, Wang AQ, Chen L, Winchell G, Davies MJ, Ramael S, Wagner JA, Herman GA : Pharmacokinetic and pharmacodynamic properties of multiple oral doses of sitagliptin, a dipeptidyl peptidase-IV inhibitor: a double-blind, randomized, placebo-controlled study in healthy male volunteers. Clin Ther 2006;28:55–72.

    Article  PubMed  CAS  Google Scholar 

  67. Ahrén B, Landin-Olsson M, Jansson PA, Svensson M, Holmes D, Schweizer A. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustain insulin levels, and reduces glucagon levels in type 2 diabetes. J Clin Endocrinol Metab 2004;89:2078–84.

    Article  PubMed  Google Scholar 

  68. Holst JJ, Deacon CF. Glucagon-like peptide-1 mediates the therapeutic actions od DPP-IV inhibitors. Diabetologia 2005;48:612–5.

    Article  PubMed  CAS  Google Scholar 

  69. Stein PP, Williams-Herman D, Khatami H, Meninger G, Round E, Sheng D, Sanchez M, Lunceford KD, Amatruda JM. Sitagliptin, a selective DPP-4 inhibitor, is well tolerated in patients with type 2 diabetes: Pooled analysis of 5141 patients for up to 2 years. Diabetes 2007;56 (Suppl 1) A142.

    Google Scholar 

  70. Goldstein BJ, Feinglos MN, Lunceford JK, Johnson J, Williams-Herman DE (Sitagliptin 036 Study Group): Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care 2007; 30:1979–87.

    Article  PubMed  CAS  Google Scholar 

  71. Bergman AJ, Coyte J, Yi B. Effect of renal insufficiency on the pharmacokinetics of MK-0431 (sitagliptin), a selective dipeptidyl-peptidase-IV (DPP-IV) inhibitor (Abstract). Clin Pharmacol Therapeut 2006;38:PII-46.

    Google Scholar 

  72. Pi-Sunyer FX, Schweizer A, Mills D, Dejager S. Efficacy and tolerability of vildagliptin monotherapy in drug-naïve patients with type 2 diabetes. Diabetes Res Clin Pract 2007;76:132–8.

    Article  PubMed  CAS  Google Scholar 

  73. Mari A, Scherbaum WA, Nilsson PM, Lalanne G, Schweizer A, Dunning BE, Jauffret S, Foley JE. Characterization of the influence of vildagliptin on model-assessed beta-cell function in patients with type 2 diabetes and mild hyperglycemia. J Clin Endocrinol Metab 2008;97: 103–9.

    Google Scholar 

  74. Scherbaum WA, Schweizer A, Mari A, Nilsson PM, Lallane G, Wang Y, Dunning BE, Foley JE. Evidence that vildagliptin attenuates deterioration of glycemic control during 2 year treatment of patients with type 2 diabetes and mild hyperglycemia. Diabetes Obes Metab 2008;10:1114–24.

    Article  PubMed  CAS  Google Scholar 

  75. Galvus Summary of Product Characteristics. Novartis Europharm Limited, West Sussex UK, September 2007.

    Google Scholar 

  76. Marfella R, Barbieri M, Grella R, Rizzo MR, Nicolleti GF, Paolisso G. Effects of vildagliptin twice daily vs. sitagliptin once daily on 24-hour acute glucose fluctuations. J Diabetes Complications. March 3, 2009 [Epub ahead of print].

    Google Scholar 

  77. MacConell L, Guan X, Okerson T, Holcombe J, DeFronzo R. Exenatide resulted in significantly greater improvement in postprandial glycemic control compared to sitagliptin. Diabetologia 2008;[Suppl] Abstract 872, S348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Léo Wajchenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wajchenberg, B.L. (2010). Clinical Approaches to Preserve β-Cell Function in Diabetes. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_23

Download citation

Publish with us

Policies and ethics