Skip to main content

The Role of Pseudomonas Lipopolysaccharide in Cystic Fibrosis Airway Infection

  • Chapter
  • First Online:
Book cover Endotoxins: Structure, Function and Recognition

Part of the book series: Subcellular Biochemistry ((SCBI,volume 53))

Abstract

Pseudomonas aeruginosa (PA) is a ubiquitous environmental Gram-negative bacterium found in soil and water. This opportunistic pathogen can cause infections in individuals with impaired phagocytic function, such as those with burns, exposure to chemotherapy, or cystic fibrosis (CF). PA infects the lungs of most individuals with CF, and is associated with severe progressive pulmonary disease that is the major cause of premature death in this disorder. The specific adaptations of PA to the CF airway responsible for bacterial persistence and antibiotic tolerance are not completely understood but may include increased alginate production (i.e., mucoid phenotype), biofilm formation, and specific lipid A modifications. During adaptation to the CF airway, PA synthesizes a variety of lipid A structures that alter host innate immune responses and promote bacterial persistence and chronic infection. The synthesis of specific lipid A structures is attributable to bacterial enzymes that: (1) remove the 3OH-C10:0 acyl chain from the 3-position (PagL); (2) add a C16:0 acyl chain to the 3OH-C10:0 chain at the 3’-position (PagP); (3) add C12:0 and 2OH-C12:0 acyl chains to the 3OH-C12:0 chains at the 2- and 2’-positions (HtrB and LpxO); and (4) add aminoarabinose to phosphate groups at the 1- and 4’-positions (PmrH, PmrF, PmrI, PmrJ, PmrK, and PmrE). These lipid A modifications represent an essential aspect of PA adaptation to the CF airway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PA:

Pseudomonas aeruginosa

CF:

cystic fibrosis

LPS:

lipopolysaccharide

References

  • Ballard, S.T., Trout, L., Bebok, Z., Sorscher, E.J., Crews, A. CFTR involvement in chloride, bicarbonate, and liquid secretion by airway submucosal glands. Am J Physiol 277 (1999) L694–699.

    PubMed  CAS  Google Scholar 

  • Bhat, R., Marx, A., Galanos, C., Conrad, R.S. Structural studies of lipid A from Pseudomonas aeruginosa PAO1: occurrence of 4-amino-4-deoxyarabinose. J Bacteriol 172 (1990) 6631–6636.

    PubMed  CAS  Google Scholar 

  • Bonfield, T.L., Konstan, M.W., Burfeind, P., Panuska, J.R., Hilliard, J.B. Berger, M., Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is down-regulated in cystic fibrosis. Am J Respir Cell Mol Biol 13 (1995) 257–261.

    PubMed  CAS  Google Scholar 

  • Boucher, J.C., Yu, H., Mudd, M.H., Deretic, V. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun 65 (1997) 3838–3846.

    PubMed  CAS  Google Scholar 

  • Burns, J.L., Gibson, R.L., McNamara, S., Yim, D., Emerson, J., Rosenfeld, M., Hiatt, P., McCoy, K., Castile, R., Smith, A.L., Ramsey, B.W. Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 183 (2001) 444–452.

    Article  PubMed  CAS  Google Scholar 

  • Burns, J.L., Van Dalfsen, J.M., Shawar, R.M., Otto, K.L., Garber, R.L., Quan, J.M., Montgomery, A.B., Albers, G.M., Ramsey, B.W., Smith, A.L. Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. J Infect Dis 179 (1999) 1190–1196.

    Article  PubMed  CAS  Google Scholar 

  • Cystic Fibrosis Foundation. CFF Patient Registry. Patient Registry Annual Data Report 2007. Bethesda, Maryland (2009).

    Google Scholar 

  • Davis, P.B., Drumm, M., Konstan, M.W. Cystic fibrosis. Am J Respir Crit Care Med 154 (1996) 1229–1256.

    PubMed  CAS  Google Scholar 

  • Ernst, R.K., Hajjar, A.M., Tsai, J.H., Moskowitz, S.M., Wilson, C.B., Miller, S.I. Pseudomonas aeruginosa lipid A diversity and its recognition by Toll-like receptor 4. J Endotoxin Res 9 (2003) 395–400.

    PubMed  CAS  Google Scholar 

  • Ernst, R.K., Yi, E.C., Guo, L., Lim, K.B., Burns, J.L., Hackett, M., Miller, S.I. Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286 (1999) 1561–1565.

    Article  PubMed  CAS  Google Scholar 

  • Geurtsen, J., Steeghs, L., Hove, J.T., van der Ley, P., Tommassen, J. Dissemination of lipid A deacylases (pagL) among gram-negative bacteria: identification of active-site histidine and serine residues. J Biol Chem 280 (2005) 8248–8259.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons, H.S., Lin, S., Cotter, R.J., Raetz, C.R. Oxygen requirement for the biosynthesis of the S-2-hydroxymyristate moiety in Salmonella typhimurium lipid A. Function of LpxO, A new Fe2+/alpha-ketoglutarate-dependent dioxygenase homologue. J Biol Chem 275 (2000) 32940–32949.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, R.C., Doran, C.C., Kadam, S.K., Capobianco, J.O. Lipid A precursor from Pseudomonas aeruginosa is completely acylated prior to addition of 3-deoxy-D-manno-octulosonate. J Biol Chem 263 (1988) 5217–5223.

    PubMed  CAS  Google Scholar 

  • Goto, T., Nakame, Y., Nishida, M., Ohi, Y., Bacterial biofilms and catheters in experimental urinary tract infection. Int J Antimicrob Agents 11 (1999) 227–231.

    Article  PubMed  CAS  Google Scholar 

  • Hajjar, A.M., Ernst, R.K., Tsai, J.H., Wilson, C.B., Miller, S.I. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat Immunol 3 (2002) 354–359.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, R.E.W., Mutharia, L.M., Chan, L., Darveau, R.P., Speert, D.P., Pier, G.B. Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum sensitive, nontypable strains deficient in lipopolysaccharide side chains. Infect Immun 42 (1983) 170–177.

    PubMed  CAS  Google Scholar 

  • Henry, R.L., Mellis, C.M., Petrovic, L. Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol 12 (1992) 158–161.

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman, S., Joo, N.S., Reitz, B., Wine, J.J. Verkman, A.S. Submucosal gland secretions in airways from cystic fibrosis patients have normal [Na(+)] and pH but elevated viscosity. Proc Natl Acad Sci USA 98 (2001) 8119–8123.

    Article  PubMed  CAS  Google Scholar 

  • Karunaratne, D.N., Richards, J.C., Hancock, R.E.W. Characterization of lipid A from Pseudomonas aeruginosa O-antigenic B band lipopolysaccharide by 1D and 2D NMR and mass spectral analysis. Arch Biochem Biophys 299 (1992) 368–376.

    Article  PubMed  CAS  Google Scholar 

  • Knowles, M.R., Boucher, R.C. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 109 (2002) 571–577.

    PubMed  CAS  Google Scholar 

  • Kulshin, V.A., Zahringer, U., Lindner, B., Jager, K.E., Dmitriev, B.A., Rietschel, E.T. Structural characterization of the lipid A component of Pseudomonas aeruginosa wild-type and rough mutant lipopolysaccharides. Eur J Biochem 198 (1991) 697–704.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., Kosorok, M.R., Farrell, P.M., Laxova, A., West, S.E., Green, C.G., Collins, J., Rock, M.J., Splaingard, M.L. Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis. Jama 293 (2005) 581–588.

    Article  PubMed  CAS  Google Scholar 

  • Lyczak, J.B., Cannon, C.L., Pier, G.B. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2 (2000) 1051–1060.

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane, E.L., Kwasnicka, A., Hancock, R.E. Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology 146(Pt 10) (2000) 2543–2554.

    PubMed  CAS  Google Scholar 

  • Macfarlane, E.L., Kwasnicka, A., Ochs, M.M., Hancock, R.E. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34 (1999) 305–316.

    Article  PubMed  CAS  Google Scholar 

  • Mahenthiralingam, E., Campbell, M.E., Speert, D.P. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62 (1994) 596–605.

    PubMed  CAS  Google Scholar 

  • McPhee, J.B., Lewenza, S., Hancock, R.E. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol 50 (2003) 205–217.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S.I., Ernst, R.K., Bader, M.W. LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3 (2005) 36–46.

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz, S.M., Burns, J.L., Nguyen, C.D., Høiby, N., Ernst, R.K., Miller, S.I. Polymyxin resistance and lipid A structure of Pseudomonas aeruginosa isolated from colistin-treated and colistin-naîve cystic fibrosis patients. Pediatr Pulmonol Suppl 20 (2000) 272.

    Google Scholar 

  • Moskowitz, S.M., Chmiel, J.F., Sternen, D.L., Cheng, E., Gibson, R.L., Marshall, S.G., Cutting, G.R. Clinical practice and genetic counseling for cystic fibrosis and CFTR-related disorders. Genet Med 10 (2008) 851–868.

    Article  PubMed  Google Scholar 

  • Moskowitz, S.M., Ernst, R.K., Miller, S.I. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 186 (2004) 575–579.

    Article  PubMed  CAS  Google Scholar 

  • Palsson-McDermott, E.M., O’Neill, L.A. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113 (2004) 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Pamp, S.J., Gjermansen, M., Johansen, H.K., Talker-Nielsen, T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68 (2008) 223–240.

    Article  PubMed  CAS  Google Scholar 

  • Pujana, I., Gallego, L., Martin, G., Lopez, F., Candela, J., Cisterna, R. Epidemiological analysis of sequential Pseudomonas aeruginosa isolates from chronic bronchiectasis patients without cystic fibrosis. J Clin Microbiol 37 (1999) 2071–2073.

    PubMed  CAS  Google Scholar 

  • Rajan, S., Saiman, L. Pulmonary infections in patients with cystic fibrosis. Semin Respir Infect 17 (2002) 47–56.

    Article  PubMed  Google Scholar 

  • Reid, G., Charbonneau-Smith, R., Lam, D., Kang, Y.S., Lacerte, M., Hayes, K.C. Bacterial biofilm formation in the urinary bladder of spinal cord injured patients. Paraplegia 30 (1992) 711–717.

    Article  PubMed  CAS  Google Scholar 

  • Romling, U., Fiedler, B., Bosshammer, J., Grothues, D., Greipel, J., von der Hardt, H., Tummler, B. Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J Infect Dis 170 (1994) 1616–1621.

    Article  PubMed  CAS  Google Scholar 

  • Singh, P.K., Schaefer, A.L., Parsek, M.R., Moninger, T.O., Welsh, M.J., Greenberg, E.P. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407 (2000) 762–764.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, S.R., Ray, A., Hodson, M.E., Pitt, T.L. Increased sputum amino acid concentrations and auxotrophy of Pseudomonas aeruginosa in severe cystic fibrosis lung disease. Thorax 55 (2000) 795–797.

    Article  PubMed  CAS  Google Scholar 

  • Trent, M.S., Pabich, W., Raetz, C.R., Miller, S.I. A PhoP/PhoQ-induced Lipase (PagL) that catalyzes 3-O-deacylation of lipid A precursors in membranes of Salmonella typhimurium. J Biol Chem 276 (2001) 9083–9092.

    Article  PubMed  CAS  Google Scholar 

  • Tummler, B., Bosshammer, J., Breitenstein, S., Brockhausen, I., Gudowius, P., Herrmann, C., Herrmann, S., Heuer, T., Kubesch, P., Menus, F., Romling, U., Schmidt, K.D., Spangenberg, C., Walter, S. Infections with Pseudomonas aeruginosa in patients with cystic fibrosis. Behring Inst Mitt (1997) 249–255.

    Google Scholar 

  • van Heeckeren, A., Walenga, R., Konstan, M.W., Bonfield, T., Davis, P.B., Ferkol, T. Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J Clin Invest 100 (1997) 2810–2815.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The review was supported by grants from the U.S. National Institutes of Health (NIH) to SMM (R01AI067653) and RKE (R01AI047938)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Ernst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Moskowitz, S.M., Ernst, R.K. (2010). The Role of Pseudomonas Lipopolysaccharide in Cystic Fibrosis Airway Infection. In: Wang, X., Quinn, P. (eds) Endotoxins: Structure, Function and Recognition. Subcellular Biochemistry, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9078-2_11

Download citation

Publish with us

Policies and ethics