Skip to main content

The Tumor Microenvironment at Different Stages of Hepatic Metastasis

  • Chapter
  • First Online:
Liver Metastasis: Biology and Clinical Management

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 16))

Abstract

This chapter summarizes current knowledge on the contribution of architectural and functional aspects of the hepatic tissue to cancer cell regulation during the process of hepatic metastasis. To this end, four consecutive phases in the process, each with distinct mechanisms, have been considered: (1) The microvascular phase of liver-infiltrating cancer cells that includes mechanisms of intravascular arrest, death or survival of cancer cells at specific sites of the hepatic microcirculation and their interactions with organ-specific microvascular endothelial and blood cells; (2) The pre-angiogenic, intralobular micrometastatic phase that includes activation of cancer cell growth, regional anti-tumor immune response impairment and stromal cell recruitment into avascular micrometastases; (3) The angiogenic panlobular micrometastatic phase that includes hypoxic stromal myofibroblasts–induced recruitment of endothelial cells, blood vessel formation and hepatic tissue replacement or “pushing-type” cancer cell growth; and (4) The lobar growth phase of hepatic metastases. During this final phase, the clinical impact and prognostic significance of the metastatic process are determined by multiple factors including the intratumoral stroma and angiogenic patterns, the phenotypes of tumor-infiltrating lymphocytes and the specific gene expression profiles of the metastatic cancer cells. In addition, alterations in the local microenvironment during liver inflammation, regeneration and fibrosis provide a favorable milieu for cancer metastasis and their impact is therefore also discussed. Resident hepatic cells and invading cancer cells can reciprocally alter each other’s gene expression profiles and functional activities during the metastatic process. The characterization of these molecular changes could lead to identification of novel biomarkers and therapeutic targets that are involved at discrete stages of hepatic metastasis and thereby impact the clinical management of liver metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SMA:

α-smooth muscle actin

CEA:

carcinoembryonic antigen

COX:

cyclooxygenase

DDR2:

discoidin domain receptor-2

HSEC:

hepatic sinusoidal endothelial cells

HSC:

hepatic stellate cells

ICE:

IL-1 converting enzyme

ManR:

mannose receptor

NK:

natural killer

TLR:

toll-like receptor

References

  1. Weiss L (1994) Inefficiency of metastasis from colorectal carcinomas. Relationship to local therapy for hepatic metastasis. Cancer Treat Res 69:1–11

    PubMed  CAS  Google Scholar 

  2. Chambers AF, Naumov GN, Vantyghem SA, Tuck AB (2000) Molecular biology of breast cancer metastasis. Clinical implications of experimental studies on metastatic inefficiency. Breast Cancer Res 2:400–407

    PubMed  CAS  Google Scholar 

  3. Vidal-Vanaclocha F (2008) The prometastatic microenvironment of the liver. Cancer Microenviron 1:113–129

    PubMed  Google Scholar 

  4. Weiss L (1992) Biomechanical interactions of cancer cells with the microvasculature during hematogenous metastasis. Cancer Met Rev 11:227–235

    CAS  Google Scholar 

  5. Barberá-Guillem E, Smith I, Weiss L (1993) Cancer-cell traffic in the liver. II. Arrest, transit and death of B16F10 and M5076 cells in the sinusoids. Int J Cancer 53:298–301

    PubMed  Google Scholar 

  6. Jessup J, Battle P, Waller H et al (1999) Reactive nitrogen and oxygen radicals formed during hepatic ischemia-reperfusion kill weakly metastatic colorectal cancer cells. Cancer Res 59:1825–1829

    PubMed  CAS  Google Scholar 

  7. Wang H, McIntosh A, Hasinoff B et al (2000) B16 melanoma cell arrest in the mouse liver induces nitric oxide release and sinusoidal cytotoxicity: a natural hepatic defense against metastasis. Cancer Res 60:5862–5869

    PubMed  CAS  Google Scholar 

  8. Anasagasti MJ, Alvarez A, Avivi C et al (1996) Interleukin-1-mediated H2O2 production by hepatic sinusoidal endothelium in response to B16 melanoma cell adhesion. J Cell Physiol 167:314–323

    PubMed  CAS  Google Scholar 

  9. Roos E, Dingemans KP, Van de Pavert IV et al (1978) Mammary-carcinoma cells in mouse liver: infiltration of liver tissue and interaction with Kupffer cells. Br J Cancer 38:88–99

    PubMed  CAS  Google Scholar 

  10. Kan Z, Ivancev K, Lunderquist A et al (1995) In vivo microscopy of hepatic metastases: dynamic observation of tumor cell invasion and interaction with Kupffer cells. Hepatology 21:487–494

    PubMed  CAS  Google Scholar 

  11. Bayón LG, Izquierdo MA, Sirovich I et al (1996) Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver. Hepatology 23:1224–1231

    PubMed  Google Scholar 

  12. Timmers M, Vekemans K, Vermijlen D et al (2004) Interactions between rat colon carcinoma cells and Kupffer cells during the onset of hepatic metastasis. Int J Cancer 112:793–802

    PubMed  CAS  Google Scholar 

  13. Bouwens L, Jacobs R, Remels L (1988) Natural cytotoxicity of rat hepatic natural killer cells and macrophages against a syngeneic colon adenocarcinoma. Cancer Immunol Immunother 27:137–141

    PubMed  CAS  Google Scholar 

  14. Gardner CR, Wasserman AJ, Laskin DL (1991) Liver macrophage mediated cytotoxicity toward mastocytoma cells involves phagocytosis of tumor targets. Hepatology 14:318–324

    PubMed  CAS  Google Scholar 

  15. Vermijlen D, Luo D, Robaye B et al (1999) Pit cells (Hepatic natural killer cells) of the rat induce apoptosis in colon carcinoma cells by the perforin/granzyme pathway. Hepatology 29:51–56

    PubMed  CAS  Google Scholar 

  16. Vekemans K, Timmers M, Vermijlen D et al (2003) CC531 colon carcinoma cells induce apoptosis in rat hepatic endothelial cells by the Fas/FasL-mediated pathway. Liver Int 23:283–293

    PubMed  CAS  Google Scholar 

  17. Vidal-Vanaclocha F, Alonso A, Barberá-Guillem E (1990) Functional variations of liver tissue during the hepatic colonization by metastatic tumor cells. Virchows Arch A Pathol Anat 416:189–195

    CAS  Google Scholar 

  18. Arteta B, Lasuen N, Lopategi A et al (2010) Colon carcinoma cell interaction with liver sinusoidal endothelium inhibits organ-specific anti-tumor immunity via IL-1-induced mannose receptor. Hepatology 51:2172–2182

    PubMed  CAS  Google Scholar 

  19. Mendoza L, Carrascal T, de Luca M et al (2001) Hydrogen peroxide mediates vascular cell adhesion molecule-1 expression from IL-18-activated hepatic sinusoidal endothelium: implications for circulating cancer cell arrest in murine liver. Hepatology 34:298–310

    PubMed  CAS  Google Scholar 

  20. Vidal-Vanaclocha F, Fantuzzi G, Mendoza L et al (2000) IL-18 regulates IL-1 beta-dependent hepatic melanoma metastasis via vascular adhesion molecule-1. Proc Natl Acad Sci USA 97:734–739

    PubMed  CAS  Google Scholar 

  21. Khatib AM, Auguste P, Fallavollita L et al (2005) Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. Am J Pathol 167:749–759

    PubMed  CAS  Google Scholar 

  22. Anasagasti MJ, Alvarez A, Martin JJ et al (1997) Sinusoidal endothelium release of hydrogen peroxide enhances very late antigen-4-mediated melanoma cell adherence and tumor cytotoxicity during interleukin-1 promotion of hepatic melanoma metastasis in mice. Hepatology 25:840–846

    PubMed  CAS  Google Scholar 

  23. Vidal-Vanaclocha F, Amézaga C, Asumendi A et al (1994) Interleukin-1 receptor blockade reduces the number and size of murine B16 melanoma hepatic metastases. Cancer Res 54:2667–2672

    PubMed  CAS  Google Scholar 

  24. Carrascal T, Mendoza L, Vacarcel M et al (2003) Interleukin-18 binding protein reduces B16 melanoma hepatic metastasis by neutralizing the adhesiveness and growth factors of sinusoidal endothelial cell. Cancer Res 63:491–497

    PubMed  CAS  Google Scholar 

  25. Vidal-Vanaclocha F, Alvarez A, Asumendi A et al (1996) Interleukin 1 (IL-1)-dependent melanoma hepatic metastasis in vivo; increased endothelial adherence by IL-1-induced mannose receptors and growth factor production in vitro. J Natl Cancer Inst 88:198–205

    PubMed  CAS  Google Scholar 

  26. Zubia A, Mendoza L, Vivanco S et al (2005) Application of stereocontrolled stepwise [3+2]. Cycloadditions to the preparation of inhibitors of alpha(4)beta(1)-integrin-mediated hepatic melanoma metastasis. Angew Chem Int Ed Engl 44:2903–2907

    PubMed  CAS  Google Scholar 

  27. Moller B, Paulukat J, Nold M et al (2003) Interferon-gamma induces expression of interleukin-18 binding protein in fibroblast-like synoviocytes. Rheumatology (Oxford) 42:442–445

    CAS  Google Scholar 

  28. Dinarello, CA, Novick D, Puren AJ et al (1998) Overview of interleukin-18: more than an interferon-gamma inducing factor. J Leukocyte Biol 63:658–666

    PubMed  CAS  Google Scholar 

  29. Vidal-Vanaclocha F, Mendoza L, Telleria N et al (2006) Clinical and experimental approaches to the pathophysiology of interleukin-18 in cancer progression. Cancer Metastasis Rev 25:417–434

    PubMed  CAS  Google Scholar 

  30. Wang N, Thuraisingam T, Fallavollita L et al (2006) The secretory leukocyte protease inhibitor is a type 1 insulin-like growth factor receptor-regulated protein that protects against liver metastasis by attenuating the host proinflammatory response. Cancer Res 66:3062–3070

    PubMed  CAS  Google Scholar 

  31. Auguste P, Fallavollita L, Wang N et al (2007) The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol 170:1781–1792

    PubMed  Google Scholar 

  32. Stahl PD, Ezekowitz RA (1998) The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 10:50–55

    PubMed  CAS  Google Scholar 

  33. Knolle PA, Gerken G (2000) Local control of the immune response in the liver. Immunol Rev 174:21–34

    PubMed  CAS  Google Scholar 

  34. Fujisaki T, Tanaka Y, Fujii K et al (1999) CD44 stimulation induces integrin mediated adhesion of colon cancer cell lines to endothelial cells by up-regulation of integrins and c-Met and activation of integrins. Cancer Res 59:4427–4434

    PubMed  CAS  Google Scholar 

  35. Valcárcel M, Arteta B, Jaureguibeitia A et al (2008) Three-dimensional growth as multicellular spheroid activates the proangiogenic phenotype of colorectal carcinoma cells via LFA-1-dependent VEGF: implications on hepatic micrometastasis. J Transl Med 9:57–69

    Google Scholar 

  36. Kamekazi S, Kurozawa Y, Iwai N et al (2005) Serum levels of soluble ICAM-1 and VCAM-1 predict pre-clinical cancer. Eur J Cancer 41:2355–2359

    Google Scholar 

  37. Kooy AJ, Tank B, Vuzevski VD et al (1998) Expression of interferon-gamma receptors and interferon-gamma-induced up-regulation of intercellular adhesion molecule-1 in basal cell carcinoma; decreased expression of IFN-gamma R and shedding of ICAM-1 as a means to escape immune surveillance. J Pathol 184:169–176

    PubMed  CAS  Google Scholar 

  38. Gho YS, Kleinman HK, Sosne G (1999) Angiogenic activity of human soluble intercellular adhesion-1. Cancer Res 59:5128–5132

    PubMed  CAS  Google Scholar 

  39. Roossien FF, de Rijk D, Bikker A et al (1989) Involvement of LFA-1 in lymphoma invasion and metastasis demonstrated with LFA-1 deficient mutants. J Cell Biol 108:1979–1985

    PubMed  CAS  Google Scholar 

  40. Wang HS, Hung Y, Su CH et al (2005) CD44 cross-linking induces-integrin mediated adhesion and transendothelial migration in breast cancer cell line by up-regulation of LFA-1 (alphaL beta2) and VLA-4 (alpha4 beta 1). Exp Cell Res 304:116–126

    PubMed  CAS  Google Scholar 

  41. Cohen S, Haimovich J, Hollander N (2003) Anti-idiotype x anti-LFA-1 bispecific antibodies inhibit metastasis of B cell lymphoma. J Immunol 170:2695–2701

    PubMed  CAS  Google Scholar 

  42. Aoudjit F, Potoworowski EF, Springer TA et al (1998) Protection from lymphoma cell metastasis in ICAM-1 mutant mice: a posthoming event. J Immunol 161:2333–2338

    PubMed  CAS  Google Scholar 

  43. Jessup JM, Laguinge L, Lin S et al (2004) Carcinoembryonic antigen induction of IL-10 and IL-6 inhibits hepatic ischemic/reperfusion injury to colorectal carcinoma cells. Int J Cancer 111:332–337

    PubMed  CAS  Google Scholar 

  44. Jessup JM, Samara R, Battle P et al (2004) Carcinoembryonic antigen promotes tumor cell survival in liver through an IL-10-dependent pathway. Clin Exp Metastasis 21:709–717

    PubMed  CAS  Google Scholar 

  45. Luo D, Vermijlen D, Kuppen PJ et al (2002) MHC class I expression protects rat colon carcinoma cells from hepatic natural killer cell-mediated apoptosis and cytolysis, by blocking the perforin/granzyme pathway. J Comp Hepatol 1:2

    Google Scholar 

  46. Anasagasti MJ, Martin JJ, Mendoza L et al (1998) Glutathione protects metastatic melanoma cells against oxidative stress in the murine hepatic microvasculature. Hepatology 27:1249–1256

    PubMed  CAS  Google Scholar 

  47. Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43:143–181

    PubMed  CAS  Google Scholar 

  48. Olaso E, Santisteban A, Bidaurrazaga J et al (1997) Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology 26:634–642

    PubMed  CAS  Google Scholar 

  49. Olaso E, Salado C, Egilegor E et al (2003) Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 37:674–685

    PubMed  CAS  Google Scholar 

  50. Deleve LD, Wang X, Guo Y (2008) Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 48:920–930

    PubMed  CAS  Google Scholar 

  51. Gressner AM, Bachem MG (1995) Molecular mechanisms of liver fibrogenesis – a homage to the role of activated fat-storing cells. Digestion 56:335–346

    PubMed  CAS  Google Scholar 

  52. Friedman SL (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134:1655–1669

    PubMed  CAS  Google Scholar 

  53. Barberá-Guillem E, Alonso-Varona A, Vidal-Vanaclocha F (1989) Selective implantation and growth in rats and mice of experimental liver metastasis in acinar zone one. Cancer Res 49:4003–4010

    PubMed  Google Scholar 

  54. Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093

    PubMed  CAS  Google Scholar 

  55. Jungermann K (1995) Zonation of metabolism and gene expression in liver. Histochem Cell Biol 103:81–91

    PubMed  CAS  Google Scholar 

  56. Jungermann K, Kietzmann T (2000) Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology 31:255–260

    PubMed  CAS  Google Scholar 

  57. Kemperman H, Wijnands Y, Meijne AM et al (1994) TA3/St, but not TA3/Ha, mammary carcinoma cell adhesion to hepatocytes is mediated by alpha 5 beta 1 interacting with surface-associated fibronectin. Cell Adhes Commun 2:45–58

    PubMed  CAS  Google Scholar 

  58. Shimizu S, Yamada N, Sawada T et al (2000) Ultrastructure of early phase hepatic metastasis of human colon carcinoma cells with special reference to desmosomal junctions with hepatocytes. Pathol Int 50:953–959

    PubMed  CAS  Google Scholar 

  59. Shimizu S, Yamada N, Sawada T et al (2000) In vivo and in vitro interactions between human colon carcinoma cells and hepatic stellate cells. Jpn J Cancer Res 91:1285–1295

    PubMed  CAS  Google Scholar 

  60. Solaun MS, Mendoza L, de Luca M et al (2002) Endostatin inhibits murine colon carcinoma sinusoidal-type metastases by preferential targeting of hepatic sinusoidal endothelium. Hepatology 35:1104–1116

    PubMed  CAS  Google Scholar 

  61. Olaso E, Arteta B, Salado C (2006) Proangiogenic implications of hepatic stellate cell transdifferentiation into myofibroblasts induced by tumor microenvironment. In: Chaponnier C (ed) Tissue repair, contraction and the myofibroblast. Landes Publication, Austin

    Google Scholar 

  62. Mueller L, Goumas FA, Affeldt M et al (2007) Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol 171:1608–1618

    PubMed  CAS  Google Scholar 

  63. Basaldua F, Vidal-Vanaclocha F (2008) Nerve growth factor expression by hepatic parenchymal and non-parenchymal cells during metastatic colorectal development in human and murine liver. Proceedings of the 14th International Symposium on Cells of the Hepatic Sinusoid (ISCHS), Tromso (Norway)

    Google Scholar 

  64. Basaldua F, Lopategi A, Arteta B et al (2008) Tumor-induced liver nerve growth factor (NGF): a new target for stromal cell inhibition during metastatic colorectal carcinoma growth. Eur J Cancer 12:55

    Google Scholar 

  65. Shaheen RM, Tseng W, Davis DW et al (2001) Tyrosine kinase inhibition of multiple angiogenic growth factors receptors improves survival in mice bearing colon cancer liver metastases by inhibition of endothelial cell survival mechanism. Cancer Res 61:1464–1468

    PubMed  CAS  Google Scholar 

  66. Reinmuth N, Liu W, Ahmad SA et al (2003) AlphaVbeta3 integrin antagonist S247 decreases colon cancer metastasis and angiogenesis and improves survival in mice. Cancer Res 63:2079–2087

    PubMed  CAS  Google Scholar 

  67. Wang YQ, Ikeda K, Ikebe T et al (2000) Inhibition of hepatic stellate cell proliferation and activation by the semisynthetic analogue of fumagillin TNP-470 in rats. Hepatology 32:980–989

    PubMed  CAS  Google Scholar 

  68. Kinoshita S, Hirai R, Yamano T et al (2004) Inhibitor TNP-470 can suppress hepatocellular carcinoma growth without retarding liver regeneration after partial hepatectomy. Surg Today 34:40–46

    PubMed  CAS  Google Scholar 

  69. Godichaud S, Krisa S, Couronne et al (2000) Deactivation of cultured human liver myofibroblasts by trans-resveratrol, a grapevine-derived polyphenol. Hepatology 31:922–931

    PubMed  CAS  Google Scholar 

  70. Fenwick SW, Toogood GJ, Lodge JP et al (2003) The effect of the selective cyclooxygenase-2 inhibitor rofecoxib on human colorectal cancer liver metastases. Gastroenterology 125:716–729

    PubMed  CAS  Google Scholar 

  71. Wei D, Wang L, He Y et al (2004) Celecoxib inhibits VEGF expression in and reduces angiogenesis and metastasis of human pancreatic cancer via suppression of Sp1 transcription factor activity. Cancer Res 64:2030–2038

    PubMed  CAS  Google Scholar 

  72. Yang ZF, Poon RT, To J et al (2004) The potential role of HIF1-alpha in tumor progression after hypoxia and chemotherapy in hepatocellular carcinoma. Cancer Res 64:5496–5503

    PubMed  CAS  Google Scholar 

  73. Yu C, Rahmani M, Almenara J et al (2004) Induction of apoptosis in human leukemia cells by the tyrosine kinase inhibitor adaphostin proceeds through a RAF-1/MEK/ERK- and AKT-dependent process. Oncogene 23:1364–1376

    PubMed  CAS  Google Scholar 

  74. Snader KM, Vishnuvajjala BR, Sausville EA et al (2002) 17-Dimethylaminoethylamino-17-desmethoxygeldanamycin (17-DMAG), a potent Hsp90 inhibitor with improved pharmaceutical and antitumor properties. In: 1st International symposium on signal transduction modulators in cancer therapy, Amsterdam

    Google Scholar 

  75. Kishibe K, Yamada Y, Ogawa K (2002) Production of nerve growth factor by mouse hepatocellular carcinoma cells and expression of TrkA in tumor-associated arteries in mice. Gastroenterology 122:1978–1986

    PubMed  CAS  Google Scholar 

  76. Rasi G, Serafino A, Bellis L et al (2007) Nerve growth factor involvement in liver cirrhosis and hepatocellular carcinoma. World J Gastroenterol 13:4986–4995

    PubMed  CAS  Google Scholar 

  77. Paku S, Lapis K (1993) Morphological aspects of angiogenesis in experimental liver metastases. Am J Pathol 143:926–936

    PubMed  CAS  Google Scholar 

  78. Vermeulen PB, Colpaert C, Salgado R et al (2001) Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol 195:336–342

    PubMed  CAS  Google Scholar 

  79. Clement B, Musso O, Lietard J et al (1999) Homeostatic control of angiogenesis: a newly identified function of the liver? Hepatology 29:621–623

    PubMed  CAS  Google Scholar 

  80. Maeda K, Nishiguchi Y, Kang SM et al (2001) Expression of thrombospondin-1 inversely correlated with tumor vascularity and hematogenous metastasis in colon cancer. Oncol Rep 8:763–766

    PubMed  CAS  Google Scholar 

  81. O’Reilly MS, Boehm T, Shing Y et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    PubMed  Google Scholar 

  82. Musso O, Theret N, Heljasvaara R et al (2001) Tumor hepatocytes and basement membrane-producing cells specifically express two different forms of the endostatin precursor, collagen XVIII, in human liver cancers. Hepatology 4:868–876

    Google Scholar 

  83. Yoon SS, Eto H, Lin C-M et al (1999) Mouse endostatin inhibits the formation of lung and liver metastases. Cancer Res 59:6251–6256

    PubMed  CAS  Google Scholar 

  84. Mendoza L, Valcárcel M, Carrascal T et al (2004) Inhibition of cytokine-induced microvascular arrest of tumor cells by recombinant endostatin prevents experimental hepatic melanoma metastasis. Cancer Res 64:304–310

    PubMed  CAS  Google Scholar 

  85. Feldman AL, Tamarkin L, Paciotti GF et al (2000) Serum endostatin levels are elevated and correlate with serum vascular endothelial growth factor levels in patients with stage IV clear cell renal cancer. Clin Cancer Res 6:4628–4634

    PubMed  CAS  Google Scholar 

  86. Kuroi K, Tanaka C, Toi M (2001) Circulating levels of endostatin in cancer patients. Oncol Rep 8:405–409

    PubMed  CAS  Google Scholar 

  87. Iughetti P, Suzuki O, Godoi PH et al (2001) A polymorphism in endostatin, an angiogenesis inhibitor, predisposes for the development of prostatic adenocarcinoma. Cancer Res 61:7375–7378

    PubMed  CAS  Google Scholar 

  88. Kim YM, Jang JW, Lee OH et al (2000) Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res 60:5410–5413

    PubMed  CAS  Google Scholar 

  89. Winnock M, Garcia-Barcina M, Huet S et al (1993) Functional characterization of liver-associated lymphocytes in patients with liver metastasis. Gastroenterology 105:1152–1158

    PubMed  CAS  Google Scholar 

  90. Kobayashi N, Hiraoka N, Yamagami W et al (2007) FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13:902–911

    PubMed  CAS  Google Scholar 

  91. Ooi LP, Crawford DH, Gotley DC et al (1997) Evidence that “myofibroblast-like” cells are the cellular source of capsular collagen in hepatocellular carcinoma. J Hepatol 26:798–807

    PubMed  CAS  Google Scholar 

  92. Stoeltzing O, Liu W, Reinmuth N et al (2003) Angiogenesis and antiangiogenic therapy of colon cancer liver metastasis. Ann Surg Oncol 10:722–733

    PubMed  Google Scholar 

  93. Bauer TW, Fan F, Liu W et al (2007) Targeting of insulin-like growth factor-I receptor with a monoclonal antibody inhibits growth of hepatic metastases from human colon carcinoma in mice. Ann Surg Oncol 14:2838–2846

    PubMed  Google Scholar 

  94. Yamasaki M, Takemasa I, Komori T et al (2007) The gene expression profile represents the molecular nature of liver metastasis in colorectal cancer. Int J Oncol 30:129–138

    PubMed  CAS  Google Scholar 

  95. Murthy SM, Goldschmidt RA, Rao LN et al (1989) The influence of surgical trauma on experimental metastasis. Cancer 64:2035–2044

    PubMed  CAS  Google Scholar 

  96. Murthy MS, Scanlon EF, Jelachich ML et al (1995) Growth and metastasis of human breast cancers in athymic nude mice. Clin Exp Metastasis 13:3–15

    PubMed  CAS  Google Scholar 

  97. Bogden AE, Moreau J-P, Eden PA (1997) Proliferative response of human animal tumors to surgical wounding of normal tissues: onset, duration and inhibition. Br J Cancer 75:1021–1027

    PubMed  CAS  Google Scholar 

  98. Hofer SO, Shrayer D, Reichner JS et al (1998) Wound-induced tumor progression: a probable role in recurrence after tumor resection. Arch Surg 133:383–389

    PubMed  CAS  Google Scholar 

  99. Nordlinger B, Guiguet M, Vaillant JC et al (1996) Surgical resection of colorectal carcinoma metastases to the liver: a prognostic scoring system to improve case selection, based on 1568 patients. Cancer 77:1254–1262

    PubMed  CAS  Google Scholar 

  100. Jaeck D, Bachellier P, Guiguet M et al (1997) Long-term survival following resection of colorectal hepatic metastases. Br J Surg 84:977–980

    PubMed  CAS  Google Scholar 

  101. Makuuchi M, Le Thai B, Takayasu K et al (1990) Preoperative portal embolization to increase safety of major hepatectomy for hilar bile duct carcinoma: a preliminary report. Surgery 107:521–527

    PubMed  CAS  Google Scholar 

  102. Elias D, Roche A, Vavasseur D et al (1992) Induction of hypertrophy of a small left hepatic lobe by preoperative right portal embolization, preceding extended right hepatectomy. Ann Chir 46:404–410

    PubMed  CAS  Google Scholar 

  103. Azoulay D, Castaing D, Smail A et al (2000) Resection of non resectable liver metastases from colorectal cancer after percutaneous PVE. Ann Surg 231:480–486

    PubMed  CAS  Google Scholar 

  104. Liu H, Zhu S (2009) Present status and future perspectives of preoperative portal vein embolization. Am J Surgery 197:686–690

    Google Scholar 

  105. Elias D, de Baere T, Roche A et al (1999) During liver regeneration following right portal embolization the growth rate of liver metastases is more rapid than that of the liver parenchyma. Br J Surg 86:784–788

    PubMed  CAS  Google Scholar 

  106. Higgins GM, Anderson RM (1931) Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol 12:186–202

    Google Scholar 

  107. Ichihashi H, Mabuchi H, Suenaga M et al (1984) Liver regeneration and tumor growth in the rat after partial hepatectomy. Jpn J Surg 14:510–514

    PubMed  CAS  Google Scholar 

  108. Morimoto H, Nio Y, Imai S et al (1992) Hepatectomy accelerates the growth of transplanted liver tumor in mice. Cancer Detec Prev 16:137–147

    PubMed  CAS  Google Scholar 

  109. Panis Y, Ribeiro J, Chretien Y et al (1992) Dormant liver metastases: an experimental study. Br J Surg 79:221–223

    PubMed  CAS  Google Scholar 

  110. Gutman M, Singh RK, Price JE et al (1994) Accelerated growth of human colon cancer cells in nude mice undergoing liver regeneration. Inv Metastasis 14:362–371

    Google Scholar 

  111. Asaga T, Suzuki K, Umeda M et al (1991) The enhancement of tumor growth after partial hepatectomy and the effect of sera obtained from hepatectomized rats on tumor cell growth. Jpn J Surg 21:669–675

    PubMed  CAS  Google Scholar 

  112. Kokudo N, Tada K, Seki M et al (2001) Proliferative activity of intrahepatic colorectal metastases after preoperative hemihepatic portal vein embolization. Hepatology 34:267–272

    PubMed  CAS  Google Scholar 

  113. Takahara T, Xue F, Mazzone M et al (2008) Metron factor-1 prevents liver injury without promoting tumor growth and metastasis. Hepatology 47:2010–2025

    PubMed  CAS  Google Scholar 

  114. Gervaz P, Pak-art R, Nivatvongs S et al (2003) Colorectal adenocarcinoma in cirrhotic patients. J Am Coll Surg 196:874–879

    PubMed  Google Scholar 

  115. Melato M, Laurino L, Mucli E et al (1989) Relationship between cirrhosis, liver cancer, and hepatic metastases. An autopsy study. Cancer 64:455–459

    PubMed  CAS  Google Scholar 

  116. Pereira-Lima JE, Lichtenfels E, Barbosa FS et al (2003) Prevalence study of metastases in cirrhotic livers. Hepatogastroenterology 50:1490–1495

    PubMed  Google Scholar 

  117. Seymour K, Charnley RM (1999) Evidence that metastasis is less common in cirrhotic than normal liver: a systematic review of post-mortem case-control studies. Br J Surg 86:1237–1242

    PubMed  CAS  Google Scholar 

  118. Song E, Chen J, Ouyang N et al (2001) Kupffer cells of cirrhotic rat livers sensitize colon cancer cells to Fas-mediated apoptosis. Br J Cancer 84:1265–1271

    PubMed  CAS  Google Scholar 

  119. Uetsuji S, Yamamura M, Yamamichi K et al (1992) Absence of colorectal cancer metastasis to the cirrhotic liver. Am J Surg 164:176–177

    PubMed  CAS  Google Scholar 

  120. Vanbockrijck M, Kloppel G (1992) Incidence and morphology of liver metastasis from extrahepatic malignancies to cirrhotic livers. Zentralbl Pathol 138:91–96

    PubMed  CAS  Google Scholar 

  121. Qi K, Qiu H, Sun D et al (2004) Impact of cirrhosis on the development of experimental hepatic metastases by B16F1 melanoma cells in C57BL/6 mice. Hepatology 40:1144–1150

    PubMed  Google Scholar 

  122. Olaso E, Ikeda K, Eng FJ et al (2001) DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J Clin Invest 108:1369–1378

    PubMed  CAS  Google Scholar 

  123. Badiola I, Vidal-Vanaclocha F, Olaso E (2010) Discoidin domain receptor 2 deficiency predisposes hepatic tissue to colon carcinoma metastasis. 15th ISCHS, Pasadena (CA)

    Google Scholar 

  124. Nomura K, Kadoya M, Ueda K et al (2007) Detection of hepatic metastases from colorectal carcinoma: comparison of histopathologic features of anatomically resected liver with results of preoperative imaging. J Clin Gastroenterol 41:789–795

    PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges with gratitude Dr. Pnina Brodt’s significant editorial contribution to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Vidal-Vanaclocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vidal-Vanaclocha, F. (2011). The Tumor Microenvironment at Different Stages of Hepatic Metastasis. In: Brodt, P. (eds) Liver Metastasis: Biology and Clinical Management. Cancer Metastasis - Biology and Treatment, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0292-9_3

Download citation

Publish with us

Policies and ethics