Skip to main content

Mitochondria and Nitric Oxide: Chemistry and Pathophysiology

  • Chapter
  • First Online:
Advances in Mitochondrial Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 942))

Abstract

Cell respiration is controlled by nitric oxide (NO) reacting with respiratory chain complexes, particularly with Complex I and IV. The functional implication of these reactions is different owing to involvement of different mechanisms. Inhibition of complex IV is rapid (milliseconds) and reversible, and occurs at nanomolar NO concentrations, whereas inhibition of complex I occurs after a prolonged exposure to higher NO concentrations. The inhibition of Complex I involves the reversible S-nitrosation of a key cysteine residue on the ND3 subunit. The reaction of NO with cytochrome c oxidase (CcOX) directly involves the active site of the enzyme: two mechanisms have been described leading to formation of either a relatively stable nitrosyl-derivative (CcOX-NO) or a more labile nitrite-derivative (CcOX-NO 2 ). Both adducts are inhibited, though with different KI; one mechanism prevails on the other depending on the turnover conditions and availability of substrates, cytochrome c and O2. SH-SY5Y neuroblastoma cells or lymphoid cells, cultured under standard O2 tension, proved to follow the mechanism leading to degradation of NO to nitrite. Formation of CcOX-NO occurred upon rising the electron flux level at this site, artificially or in the presence of higher amounts of endogenous reduced cytochrome c. Taken together, the observations suggest that the expression level of mitochondrial cytochrome c may be crucial to determine the respiratory chain NO inhibition pathway prevailing in vivo under nitrosative stress conditions. The putative patho-physiological relevance of the interaction between NO and the respiratory complexes is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CcOX:

cytochrome c oxidase

I/R:

ischemia and reperfusion

Mb:

myoglobin

NO:

nitric oxide

NOS:

nitric oxide synthase

ONOO :

peroxynitrite

OXPHOS:

oxidative phosphorylation

ROS:

reactive oxygen species

SNO-MPG:

S-nitroso-2-mercaptopropionyl-glicine.

TMPD:

tetramethyl-p-phenylendiamine

References

  • Almeida A, Almeida J, Bolanos JP, Moncada S (2001) Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA 98:15294–15299

    PubMed  CAS  Google Scholar 

  • Almeida A, Moncada S, Bolanos JP (2004) Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol 6:45–51

    PubMed  CAS  Google Scholar 

  • Antonini E, Brunori M, Colosimo A, Greenwood C, Wilson MT (1977) Oxygen “pulsed” cytochrome c oxidase: functional properties and catalytic relevance. Proc Natl Acad Sci USA 74:3128–3132

    PubMed  CAS  Google Scholar 

  • Antunes F, Boveris A, Cadenas E (2007) On the biologic role of the reaction of NO with oxidized cytochrome c oxidase. Antioxid Redox Signal 9:1569–1579

    PubMed  CAS  Google Scholar 

  • Babcock GT (1999) How oxygen is activated and reduced in respiration. Proc Natl Acad Sci USA 96:12971–12973

    PubMed  CAS  Google Scholar 

  • Basu S, Azarova NA, Font MD, King SB, Hogg N, Gladwin MT, Shiva S, Kim-Shapiro DB (2008) Nitrite reductase activity of cytochrome c. J Biol Chem 283:32590–32597

    PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    PubMed  CAS  Google Scholar 

  • Blackmore RS, Greenwood C, Gibson QH (1991) Studies of the primary oxygen intermediate in the reaction of fully reduced cytochrome oxidase. J Biol Chem 266:19245–19249

    PubMed  CAS  Google Scholar 

  • Blandini F, Braunewell KH, Manahan-Vaughan D, Orzi F, Sarti P (2004) Neurodegeneration and energy metabolism: from chemistry to clinics. Cell Death Differ 11:479–484

    PubMed  CAS  Google Scholar 

  • Bolanos JP, Peuchen S, Heales SJ, Land JM, Clark JB (1994) Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J Neurochem 63:910–916

    PubMed  CAS  Google Scholar 

  • Borisov VB, Forte E, Konstantinov AA, Poole RK, Sarti P, Giuffrè A (2004) Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide. FEBS Lett 576:201–204

    PubMed  CAS  Google Scholar 

  • Borisov VB, Forte E, Sarti P, Brunori M, Konstantinov AA, Giuffrè A (2006) Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase. FEBS Lett 580:4823–4826

    PubMed  CAS  Google Scholar 

  • Borisov VB, Forte E, Sarti P, Brunori M, Konstantinov AA, Giuffrè A (2007) Redox control of fast ligand dissociation from Escherichia coli cytochrome bd. Biochem Biophys Res Commun 355:97–102

    PubMed  CAS  Google Scholar 

  • Borisov VB, Forte E, Giuffrè A, Konstantinov A, Sarti P (2009) Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: different reaction pathways and end-products. J Inorg Biochem 103:1185–1187

    PubMed  CAS  Google Scholar 

  • Borutaite V, Brown GC (1996) Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide. Biochem J 315(Pt 1):295–299

    PubMed  CAS  Google Scholar 

  • Borutaite V, Brown GC (2003) Nitric oxide induces apoptosis via hydrogen peroxide, but necrosis via energy and thiol depletion. Free Radic Biol Med 35:1457–1468

    PubMed  CAS  Google Scholar 

  • Borutaite V, Budriunaite A, Brown GC (2000) Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochim Biophys Acta 1459:405–412

    PubMed  CAS  Google Scholar 

  • Brookes P, Darley-Usmar VM (2002) Hypothesis: the mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radic Biol Med 32:370–374

    PubMed  CAS  Google Scholar 

  • Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM (2002) Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med 33:755–764

    PubMed  CAS  Google Scholar 

  • Brookes PS, Kraus DW, Shiva S, Doeller JE, Barone MC, Patel RP, Lancaster JR Jr, Darley-Usmar V (2003) Control of mitochondrial respiration by NO*, effects of low oxygen and respiratory state. J Biol Chem 278:31603–31609

    PubMed  CAS  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    PubMed  CAS  Google Scholar 

  • Brown GC, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295–298

    PubMed  CAS  Google Scholar 

  • Brown GC, Bolanos JP, Heales SJ, Clark JB (1995) Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci Lett 193:201–204

    PubMed  CAS  Google Scholar 

  • Brudvig GW, Stevens TH, Chan SI (1980) Reactions of nitric oxide with cytochrome c oxidase. Biochemistry 19:5275–5285

    PubMed  CAS  Google Scholar 

  • Brunori M, Giuffrè A, Sarti P, Stubauer G, Wilson MT (1999) Nitric oxide and cellular respiration. Cell Mol Life Sci 56:549–557

    PubMed  CAS  Google Scholar 

  • Brunori M, Giuffrè A, Forte E, Mastronicola D, Barone MC, Sarti P (2004) Control of cytochrome c oxidase activity by nitric oxide. Biochim Biophys Acta 1655:365–371

    PubMed  CAS  Google Scholar 

  • Brunori M, Forte E, Arese M, Mastronicola D, Giuffrè A, Sarti P (2006) Nitric oxide and the respiratory enzyme. Biochim Biophys Acta 1757:1144–1154

    PubMed  CAS  Google Scholar 

  • Bryan NS, Calvert JW, Elrod JW, Gundewar S, Ji SY, Lefer DJ (2007) Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury. Proc Natl Acad Sci USA 104:19144–19149

    PubMed  CAS  Google Scholar 

  • Carr GJ, Ferguson SJ (1990) Nitric oxide formed by nitrite reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions. Biochim Biophys Acta 1017:57–62

    PubMed  CAS  Google Scholar 

  • Castello PR, David PS, McClure T, Crook Z, Poyton RO (2006) Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3:277–287

    PubMed  CAS  Google Scholar 

  • Castello PR, Woo DK, Ball K, Wojcik J, Liu L, Poyton RO (2008) Oxygen-regulated isoforms of cytochrome c oxidase have differential effects on its nitric oxide production and on hypoxic signaling. Proc Natl Acad Sci USA 105:8203–8208

    PubMed  CAS  Google Scholar 

  • Chance B (1965) Reaction of oxygen with the respiratory chain in cells and tissues. J Gen Physiol 49(Suppl):163–195

    PubMed  CAS  Google Scholar 

  • Cleeter MW, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AH (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 345:50–54

    PubMed  CAS  Google Scholar 

  • Clementi E, Brown GC, Feelisch M, Moncada S (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95:7631–7636

    PubMed  CAS  Google Scholar 

  • Clementi E, Brown GC, Foxwell N, Moncada S (1999) On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc Natl Acad Sci USA 96:1559–1562

    PubMed  CAS  Google Scholar 

  • Cooper CE (2002) Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem Sci 27:33–39

    PubMed  CAS  Google Scholar 

  • Cooper CE, Giulivi C (2007) Nitric oxide regulation of mitochondrial oxygen consumption II: molecular mechanism and tissue physiology. Am J Physiol Cell Physiol 292:C1993–C2003

    PubMed  CAS  Google Scholar 

  • Cooper CE, Torres J, Sharpe MA, Wilson MT (1997) Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidised copper: a general mechanism for the interaction of copper proteins with nitric oxide? FEBS Lett 414:281–284

    PubMed  CAS  Google Scholar 

  • Cooper CE, Mason MG, Nicholls P (2008) A dynamic model of nitric oxide inhibition of mitochondrial cytochrome c oxidase. Biochim Biophys Acta 1777:867–876

    PubMed  CAS  Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    PubMed  CAS  Google Scholar 

  • Dezfulian C et al (2009) Nitrite therapy after cardiac arrest reduces reactive oxygen species generation, improves cardiac and neurological function, and enhances survival via reversible inhibition of mitochondrial complex I. Circulation 120:897–905

    PubMed  CAS  Google Scholar 

  • Di Lisa F, Bernardi P (2006) Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70:191–199

    PubMed  Google Scholar 

  • Erusalimsky JD, Moncada S (2007) Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol 27:2524–2531

    PubMed  CAS  Google Scholar 

  • Fabian M, Wong WW, Gennis RB, Palmer G (1999) Mass spectrometric determination of dioxygen bond splitting in the “peroxy” intermediate of cytochrome c oxidase. Proc Natl Acad Sci USA 96:13114–13117

    PubMed  CAS  Google Scholar 

  • Forte E, Urbani A, Saraste M, Sarti P, Brunori M, Giuffrè A (2001) The cytochrome cbb3 from Pseudomonas stutzeri displays nitric oxide reductase activity. Eur J Biochem 268:6486–6491

    PubMed  CAS  Google Scholar 

  • Foster KA, Galeffi F, Gerich FJ, Turner DA, Muller M (2006) Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog Neurobiol 79:136–171

    PubMed  CAS  Google Scholar 

  • Galkin A, Moncada S (2007) S-nitrosation of mitochondrial complex I depends on its structural conformation. J Biol Chem 282:37448–37453

    PubMed  CAS  Google Scholar 

  • Galkin A, Abramov AY, Frakich N, Duchen MR, Moncada S (2009) Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury? J Biol Chem 284(52):36055–36061

    PubMed  CAS  Google Scholar 

  • Gavrikova EV, Vinogradov AD (1999) Active/de-active state transition of the mitochondrial complex I as revealed by specific sulfhydryl group labeling. FEBS Lett 455:36–40

    PubMed  CAS  Google Scholar 

  • Gibson Q, Greenwood C (1963) Reactions of cytochrome oxidase with oxygen and carbon monoxide. Biochem J 86:541–555

    PubMed  CAS  Google Scholar 

  • Giuffrè A, Stubauer G, Brunori M, Sarti P, Torres J, Wilson MT (1998) Chloride bound to oxidized cytochrome c oxidase controls the reaction with nitric oxide. J Biol Chem 273:32475–32478

    PubMed  CAS  Google Scholar 

  • Giuffrè A, Stubauer G, Sarti P, Brunori M, Zumft WG, Buse G, Soulimane T (1999) The heme-copper oxidases of Thermus thermophilus catalyze the reduction of nitric oxide: evolutionary implications. Proc Natl Acad Sci USA 96:14718–14723

    PubMed  CAS  Google Scholar 

  • Giuffrè A, Barone MC, Mastronicola D, D’Itri E, Sarti P, Brunori M (2000) Reaction of nitric oxide with the turnover intermediates of cytochrome c oxidase: reaction pathway and functional effects. Biochemistry 39:15446–15453

    PubMed  CAS  Google Scholar 

  • Giuffrè A, Barone MC, Brunori M, D’Itri E, Ludwig B, Malatesta F, Muller HW, Sarti P (2002) Nitric oxide reacts with the single-electron reduced active site of cytochrome c oxidase. J Biol Chem 277:22402–22406

    PubMed  CAS  Google Scholar 

  • Giuffrè A, Forte E, Brunori M, Sarti P (2005) Nitric oxide, cytochrome c oxidase and myoglobin: competition and reaction pathways. FEBS Lett 579:2528–2532

    PubMed  CAS  Google Scholar 

  • Giuffrè A, Sarti P, D’Itri E, Buse G, Soulimane T, Brunori M (1996) On the mechanism of inhibition of cytochrome c oxidase by nitric oxide. J Biol Chem 271:33404–33408

    PubMed  Google Scholar 

  • Giulivi C (2003) Characterization and function of mitochondrial nitric-oxide synthase. Free Radic Biol Med 34:397–408

    PubMed  CAS  Google Scholar 

  • Gladwin MT, Shelhamer JH, Schechter AN, Pease-Fye ME, Waclawiw MA, Panza JA, Ognibene FP, Cannon RO 3rd (2000) Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc Natl Acad Sci USA 97:11482–11487

    PubMed  CAS  Google Scholar 

  • Hagen T, Taylor CT, Lam F, Moncada S (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302:1975–1978

    PubMed  CAS  Google Scholar 

  • Hare JM, Keaney JF Jr, Balligand JL, Loscalzo J, Smith TW, Colucci WS (1995) Role of nitric oxide in parasympathetic modulation of beta-adrenergic myocardial contractility in normal dogs. J Clin Invest 95:360–366

    PubMed  CAS  Google Scholar 

  • Hendgen-Cotta UB et al (2008) Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci USA 105:10256–10261

    PubMed  CAS  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    PubMed  CAS  Google Scholar 

  • Jenkins RR (1993) Exercise, oxidative stress, and antioxidants: a review. Int J Sport Nutr 3:356–375

    PubMed  CAS  Google Scholar 

  • Keynes RG, Garthwaite J (2004) Nitric oxide and its role in ischaemic brain injury. Curr Mol Med 4:179–191

    PubMed  CAS  Google Scholar 

  • Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7:156–167

    PubMed  CAS  Google Scholar 

  • Masci A, Mastronicola D, Arese M, Piane M, De Amicis A, Blanck TJ, Chessa L, Sarti P (2008) Control of cell respiration by nitric oxide in Ataxia Telangiectasia lymphoblastoid cells. Biochim Biophys Acta 1777:66–73

    PubMed  CAS  Google Scholar 

  • Mason MG, Nicholls P, Wilson MT, Cooper CE (2006) Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc Natl Acad Sci USA 103:708–713

    PubMed  CAS  Google Scholar 

  • Mason MG, Shepherd M, Nicholls P, Dobbin PS, Dodsworth KS, Poole RK, Cooper CE (2009a) Cytochrome bd confers nitric oxide resistance to Escherichia coli. Nat Chem Biol 5:94–96

    PubMed  CAS  Google Scholar 

  • Mason MG, Nicholls P, Cooper CE (2009b) The steady-state mechanism of cytochrome c oxidase: redox interactions between metal centres. Biochem J 422:237–246

    PubMed  CAS  Google Scholar 

  • Mastronicola D et al (2003) Control of respiration by nitric oxide in Keilin-Hartree particles, mitochondria and SH-SY5Y neuroblastoma cells. Cell Mol Life Sci 60:1752–1759

    PubMed  CAS  Google Scholar 

  • Moncada S, Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3:214–220

    PubMed  CAS  Google Scholar 

  • Nadtochiy SM, Burwell LS, Brookes PS (2007) Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J Mol Cell Cardiol 42:812–825

    PubMed  CAS  Google Scholar 

  • Palacios-Callender M, Quintero M, Hollis VS, Springett RJ, Moncada S (2004) Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase. Proc Natl Acad Sci USA 101:7630–7635

    PubMed  CAS  Google Scholar 

  • Palacios-Callender M, Hollis V, Mitchison M, Frakich N, Unitt D, Moncada S (2007a) Cytochrome c oxidase regulates endogenous nitric oxide availability in respiring cells: a possible explanation for hypoxic vasodilation. Proc Natl Acad Sci USA 104:18508–18513

    PubMed  CAS  Google Scholar 

  • Palacios-Callender M, Hollis V, Frakich N, Mateo J, Moncada S (2007b) Cytochrome c oxidase maintains mitochondrial respiration during partial inhibition by nitric oxide. J Cell Sci 120:160–165

    PubMed  CAS  Google Scholar 

  • Pearce LL, Kanai AJ, Birder LA, Pitt BR, Peterson J (2002) The catabolic fate of nitric oxide: the nitric oxide oxidase and peroxynitrite reductase activities of cytochrome oxidase. J Biol Chem 277:13556–13562

    PubMed  CAS  Google Scholar 

  • Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92

    PubMed  CAS  Google Scholar 

  • Poyton RO, Castello PR, Ball KA, Woo DK, Pan N (2009) Mitochondria and hypoxic signaling: a new view. Ann N Y Acad Sci 1177:48–56

    PubMed  CAS  Google Scholar 

  • Prime TA et al (2009) A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc Natl Acad Sci USA 106:10764–10769

    PubMed  CAS  Google Scholar 

  • Rassaf T, Flogel U, Drexhage C, Hendgen-Cotta U, Kelm M, Schrader J (2007) Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res 100:1749–1754

    PubMed  CAS  Google Scholar 

  • Sarti P, Lendaro E, Ippoliti R, Bellelli A, Benedetti PA, Brunori M (1999) Modulation of mitochondrial respiration by nitric oxide: investigation by single cell fluorescence microscopy. FASEB J 13:191–197

    PubMed  CAS  Google Scholar 

  • Sarti P, Giuffrè A, Forte E, Mastronicola D, Barone MC, Brunori M (2000) Nitric oxide and cytochrome c oxidase: mechanisms of inhibition and NO degradation. Biochem Biophys Res Commun 274:183–187

    PubMed  CAS  Google Scholar 

  • Sarti P, Giuffrè A, Barone MC, Forte E, Mastronicola D, Brunori M (2003) Nitric oxide and cytochrome oxidase: reaction mechanisms from the enzyme to the cell. Free Radic Biol Med 34:509–520

    PubMed  CAS  Google Scholar 

  • Schapira AH (1998) Human complex I defects in neurodegenerative diseases. Biochim Biophys Acta 1364:261–270

    PubMed  CAS  Google Scholar 

  • Schapira AH (2010) Complex I: inhibitors, inhibition and neurodegeneration. Exp Neurol 224(2):331–335

    PubMed  CAS  Google Scholar 

  • Schweizer M, Richter C (1994) Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Biochem Biophys Res Commun 204:169–175

    PubMed  CAS  Google Scholar 

  • Shen W, Hintze TH, Wolin MS (1995) Nitric oxide. An important signaling mechanism between vascular endothelium and parenchymal cells in the regulation of oxygen consumption. Circulation 92:3505–3512

    PubMed  CAS  Google Scholar 

  • Shiva S, Gladwin MT (2009) Nitrite mediates cytoprotection after ischemia/reperfusion by modulating mitochondrial function. Basic Res Cardiol 104:113–119

    PubMed  CAS  Google Scholar 

  • Shiva S, Brookes PS, Patel RP, Anderson PG, Darley-Usmar VM (2001) Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase. Proc Natl Acad Sci USA 98:7212–7217

    PubMed  CAS  Google Scholar 

  • Shiva S, Oh JY, Landar AL, Ulasova E, Venkatraman A, Bailey SM, Darley-Usmar VM (2005) Nitroxia: the pathological consequence of dysfunction in the nitric oxide-cytochrome c oxidase signaling pathway. Free Radic Biol Med 38:297–306

    PubMed  CAS  Google Scholar 

  • Shiva S et al (2007a) Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204:2089–2102

    PubMed  CAS  Google Scholar 

  • Shiva S et al (2007b) Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res 100:654–661

    PubMed  CAS  Google Scholar 

  • Stamler JS et al (1992) Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 89:7674–7677

    PubMed  CAS  Google Scholar 

  • Stubauer G, Giuffrè A, Brunori M, Sarti P (1998) Cytochrome c oxidase does not catalyze the anaerobic reduction of NO. Biochem Biophys Res Commun 245:459–465

    PubMed  CAS  Google Scholar 

  • Stuehr DJ, Nathan CF (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555

    PubMed  CAS  Google Scholar 

  • Thomas DD, Liu X, Kantrow SP, Lancaster JR Jr (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci USA 98:355–360

    PubMed  CAS  Google Scholar 

  • Torres J, Darley-Usmar V, Wilson MT (1995) Inhibition of cytochrome c oxidase in turnover by nitric oxide: mechanism and implications for control of respiration. Biochem J 312:169–173

    PubMed  CAS  Google Scholar 

  • Torres J, Cooper CE, Wilson MT (1998) A common mechanism for the interaction of nitric oxide with the oxidized binuclear centre and oxygen intermediates of cytochrome c oxidase. J Biol Chem 273:8756–8766

    PubMed  CAS  Google Scholar 

  • Torres J, Sharpe MA, Rosquist A, Cooper CE, Wilson MT (2000) Cytochrome c oxidase rapidly metabolises nitric oxide to nitrite. FEBS Lett 475:263–266

    PubMed  CAS  Google Scholar 

  • Trimmer BA, Aprille JR, Dudzinski DM, Lagace CJ, Lewis SM, Michel T, Qazi S, Zayas RM (2001) Nitric oxide and the control of firefly flashing. Science 292:2486–2488

    PubMed  CAS  Google Scholar 

  • Vinogradov AD (1998) Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. Biochim Biophys Acta 1364:169–185

    PubMed  CAS  Google Scholar 

  • Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A (2004) Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci USA 101:13683–13688

    PubMed  CAS  Google Scholar 

  • Weitzberg E, Lundberg JO (1998) Nonenzymatic nitric oxide production in humans. Nitric Oxide 2:1–7

    PubMed  CAS  Google Scholar 

  • Weng L, Baker GM (1991) Reaction of hydrogen peroxide with the rapid form of resting cytochrome oxidase. Biochemistry 30:5727–5733

    PubMed  CAS  Google Scholar 

  • Xie YW, Shen W, Zhao G, Xu X, Wolin MS, Hintze TH (1996) Role of endothelium-derived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro. Implications for the development of heart failure. Circ Res 79:381–387

    PubMed  CAS  Google Scholar 

  • Zhao G, Bernstein RD, Hintze TH (1999) Nitric oxide and oxygen utilization: exercise, heart failure and diabetes. Coron Artery Dis 10:315–320

    PubMed  CAS  Google Scholar 

  • Zweier JL, Samouilov A, Kuppusamy P (1999) Non-enzymatic nitric oxide synthesis in biological systems. Biochim Biophys Acta 1411:250–262

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work partially supported by Ministero dell’Istruzione, dell’Università e della Ricerca of Italy to P.S. (PRIN “Metabolismo Energetico dell’Ossigeno e del Monossido di Azoto: Fisiologia e Patologia”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Sarti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sarti, P., Arese, M., Forte, E., Giuffrè, A., Mastronicola, D. (2012). Mitochondria and Nitric Oxide: Chemistry and Pathophysiology. In: Scatena, R., Bottoni, P., Giardina, B. (eds) Advances in Mitochondrial Medicine. Advances in Experimental Medicine and Biology, vol 942. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2869-1_4

Download citation

Publish with us

Policies and ethics