Skip to main content

Epigenetic Regulation of Cancer Stem Cell Gene Expression

  • Chapter
  • First Online:
Epigenetics: Development and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 61))

Abstract

The concept of cancer as a stem cell disease has slowly gained ground over the last decade. A ‘stem-like’ state essentially necessitates that some cells in the developing tumor express the properties of remaining quiescent, self-renewing and regenerating tumors through establishment of aberrant cellular hierarchies. Alternatively, such capacities may also be reacquired through a de-differentiation process. The abnormal cellular differentiation patterns involved during either process during carcinogenesis are likely to be driven through a combination of genetic events and epigenetic regulation. The role(s) of the latter is increasingly being appreciated in acquiring the requisite genomic specificity and flexibility required for phenotypic plasticity, specifically in a context wherein genome sequences are not altered for differentiation to ensue. In this chapter, the recent advances in elucidating epigenetic mechanisms that govern the self-renewal, differentiation and regenerative potentials of cancer stem cells will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama Y, Maesawa C, Ogasawara S, Terashima M, Masuda T (2003) Cell-type-specific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. Am J Pathol 163:1911–1919

    Article  PubMed  CAS  Google Scholar 

  • Ammerpohl O, Pratschke J, Schafmayer C, Haake A, Faber W, von Kampen O, Brosch M, Sipos B, von Schonfels W, Balschun K, Rocken C, Arlt A, Schniewind B, Grauholm J, Kalthoff H, Neuhaus P, Stickel F, Schreiber S, Becker T, Siebert R (2011) Hampe J. Distinct DNA methylation patterns in cirrhotic liver and hepatocellular carcinoma, Int J Cancer

    Google Scholar 

  • Aoki R, Chiba T, Miyagi S, Negishi M, Konuma T, Taniguchi H, Ogawa M, Yokosuka O, Iwama A (2010) The polycomb group gene product Ezh2 regulates proliferation and differentiation of murine hepatic stem/progenitor cells. J Hepatol 52:854–863

    Article  PubMed  CAS  Google Scholar 

  • Bapat SA (2007) Evolution of cancer stem cells. Semin Cancer Biol 17:204–213

    Article  PubMed  CAS  Google Scholar 

  • Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  PubMed  CAS  Google Scholar 

  • Biancotto C, Frige G, Minucci S (2010) Histone modification therapy of cancer. Adv Genet 70:341–386

    Article  PubMed  CAS  Google Scholar 

  • Bloushtain-Qimron N, Yao J, Snyder EL, Shipitsin M, Campbell LL, Mani SA, Hu M, Chen H, Ustyansky V, Antosiewicz JE, Argani P, Halushka MK, Thomson JA, Pharoah P, Porgador A, Sukumar S, Parsons R, Richardson AL, Stampfer MR, Gelman RS, Nikolskaya T, Nikolsky Y, Polyak K (2008) Cell type-specific DNA methylation patterns in the human breast. Proc Natl Acad Sci U S A 105:14076–14081

    Article  PubMed  CAS  Google Scholar 

  • Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353

    Article  PubMed  CAS  Google Scholar 

  • Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22:5323–5335

    Article  PubMed  CAS  Google Scholar 

  • Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K (2007) The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21:525–530

    Article  PubMed  CAS  Google Scholar 

  • Broske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, Kuhl C, Enns A, Prinz M, Jaenisch R, Nerlov C, Leutz A, Andrade-Navarro MA, Jacobsen SE, Rosenbauer F (2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 41:1207–1215

    Article  PubMed  Google Scholar 

  • Calvanese V, Horrillo A, Hmadcha A, Suarez-Alvarez B, Fernandez AF, Lara E, Casado S, Menendez P, Bueno C, Garcia-Castro J, Rubio R, Lapunzina P, Alaminos M, Borghese L, Terstegge S, Harrison NJ, Moore HD, Brustle O, Lopez-Larrea C, Andrews PW, Soria B, Esteller M, Fraga MF (2008) Cancer genes hypermethylated in human embryonic stem cells. PLoS One 3:e3294

    Article  PubMed  Google Scholar 

  • Cheng Z, Ke Y, Ding X, Wang F, Wang H, Wang W, Ahmed K, Liu Z, Xu Y, Aikhionbare F, Yan H, Liu J, Xue Y, Yu J, Powell M, Liang S, Wu Q, Reddy SE, Hu R, Huang H, Jin C, Yao X (2008) Functional characterization of TIP60 sumoylation in UV-irradiated DNA damage response. Oncogene 27:931–941

    Article  PubMed  CAS  Google Scholar 

  • Chi AS, Bernstein BE (2009) Developmental biology. Pluripotent chromatin state. Science 323:220–221

    Article  PubMed  CAS  Google Scholar 

  • De Smet C, Lurquin C, Lethe B, Martelange V, Boon T (1999) DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19:7327–7335

    PubMed  Google Scholar 

  • Di Stefano L, Walker JA, Burgio G, Corona DF, Mulligan P, Naar AM, Dyson NJ (2011) Functional antagonism between histone H3K4 demethylases in vivo. Genes Dev 25:17–28

    Article  PubMed  Google Scholar 

  • Ding WJ, Fang JY, Chen XY, Peng YS (2008) The expression and clinical significance of DNA methyltransferase proteins in human gastric cancer. Dig Dis Sci 53:2083–2089

    Article  PubMed  CAS  Google Scholar 

  • Duan Z, Zarebski A, Montoya-Durango D, Grimes HL, Horwitz M (2005) Gfi1 coordinates epigenetic repression of p21Cip/WAF1 by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. Mol Cell Biol 25:10338–10351

    Article  PubMed  CAS  Google Scholar 

  • Duthie SJ (2011) Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc 70:47–56

    Article  PubMed  CAS  Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M (2009) DNA hypomethylation in cancer cells. Epigenomics 1:239–259

    Article  PubMed  CAS  Google Scholar 

  • Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G, Tarakhovsky A, Fuchs E (2009) Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136:1122–1135

    Article  PubMed  CAS  Google Scholar 

  • Gokul G, Ramakrishna G, Khosla S (2009) Reprogramming of HeLa cells upon DNMT3L overexpression mimics carcinogenesis. Epigenetics 4:322–329

    Article  PubMed  CAS  Google Scholar 

  • Gu B, Sun P, Yuan Y, Moraes RC, Li A, Teng A, Agrawal A, Rheaume C, Bilanchone V, Veltmaat JM, Takemaru K, Millar S, Lee EY, Lewis MT, Li B, Dai X (2009) Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation. J Cell Biol 185:811–826

    Article  PubMed  CAS  Google Scholar 

  • Han DW, Do JT, Arauzo-Bravo MJ, Lee SH, Meissner A, Lee HT, Jaenisch R, Scholer HR (2009) Epigenetic hierarchy governing Nestin expression. Stem Cells 27:1088–1097

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Vargas H, Ouzounova M, Calvez-Kelm F, Lambert MP, McKay-Chopin S, Tavtigian SV, Puisieux A, Matar C, Herceg Z (2011) Methylome analysis reveals Jak-STAT pathway deregulation in putative breast cancer stem cells. Epigenetics 6:428–439

    Article  PubMed  CAS  Google Scholar 

  • Hinshelwood RA, Clark SJ (2008) Breast cancer epigenetics: normal human mammary epithelial cells as a model system. J Mol Med 86:1315–1328

    Article  PubMed  Google Scholar 

  • Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477

    Article  PubMed  CAS  Google Scholar 

  • Hsu M, Richardson CA, Olivier E, Qiu C, Bouhassira EE, Lowrey CH, Fiering S (2009) Complex developmental patterns of histone modifications associated with the human beta-globin switch in primary cells. Exp Hematol 37:799–806

    Article  PubMed  CAS  Google Scholar 

  • Huang TH, Esteller M (2010) Chromatin remodeling in mammary gland differentiation and breast tumorigenesis. Cold Spring Harb Perspect Biol 2:a004515

    Article  PubMed  Google Scholar 

  • Ibragimova I, de Ibanez CI, Hoffman AM, Potapova A, Dulaimi E, Al Saleem T, Hudes GR, Ochs MF, Cairns P (2010) Global reactivation of epigenetically silenced genes in prostate cancer. Cancer Prev Res (Phila) 3(9):1084–1092

    Article  CAS  Google Scholar 

  • Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Shukla A, Wang X, Chen WY, Bernstein BE, Roeder RG (2011) Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144:513–525

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  • Kanno R, Janakiraman H, Kanno M (2008) Epigenetic regulator polycomb group protein complexes control cell fate and cancer. Cancer Sci 99:1077–1084

    Article  PubMed  CAS  Google Scholar 

  • Karanikolas BD, Figueiredo ML, Wu L (2009) Polycomb group protein enhancer of zeste 2 is an oncogene that promotes the neoplastic transformation of a benign prostatic epithelial cell line. Mol Cancer Res 7:1456–1465

    Article  PubMed  CAS  Google Scholar 

  • Karpf AR, Matsui S (2005) Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res 65:8635–8639

    Article  PubMed  CAS  Google Scholar 

  • Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP (2009) Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 18:1093–1108

    Article  PubMed  CAS  Google Scholar 

  • Khavari DA, Sen GL, Rinn JL (2010) DNA methylation and epigenetic control of cellular differentiation. Cell Cycle 9:3880–3883

    Article  PubMed  CAS  Google Scholar 

  • Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y (2007) pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev 21:49–54

    Article  PubMed  CAS  Google Scholar 

  • Kotini AG, Mpakali A, Agalioti T (2011) Dnmt3a1 upregulates transcription of distinct genes and targets chromosomal gene clusters for epigenetic silencing in mouse embryonic stem cells. Mol Cell Biol 31:1577–1592

    Article  PubMed  CAS  Google Scholar 

  • Kubicek S, Schotta G, Lachner M, Sengupta R, Kohlmaier A, Perez-Burgos L, Linderson Y, Martens JH, O’Sullivan RJ, Fodor BD, Yonezawa M, Peters AH, Jenuwein T (2006) The role of histone modifications in epigenetic transitions during normal and perturbed development. Ernst Schering Res Found Workshop , 1–27

    Google Scholar 

  • Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA (2009) Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27:2059–2068

    Article  PubMed  CAS  Google Scholar 

  • Kwon OH, Park JL, Kim M, Kim JH, Lee HC, Kim HJ, Noh SM, Song KS, Yoo HS, Paik SG, Kim SY, Kim YS (2011) Aberrant up-regulation of LAMB3 and LAMC2 by promoter demethylation in gastric cancer. Biochem Biophys Res Commun 406:539–545

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhao X (2008) Epigenetic regulation of mammalian stem cells. Stem Cells Dev 17:1043–1052

    Article  PubMed  CAS  Google Scholar 

  • Li J, Bench AJ, Vassiliou GS, Fourouclas N, Ferguson-Smith AC, Green AR (2004) Imprinting of the human L3MBTL gene, a polycomb family member located in a region of chromosome 20 deleted in human myeloid malignancies. Proc Natl Acad Sci U S A 101:7341–7346

    Article  PubMed  CAS  Google Scholar 

  • Li X, Gonzalez ME, Toy K, Filzen T, Merajver SD, Kleer CG (2009) Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia. Am J Pathol 175:1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Li Q, O’Malley ME, Bartlett DL, Guo ZS (2011) Homeobox gene Rhox5 is regulated by epigenetic mechanisms in cancer and stem cells and promotes cancer growth. Mol Cancer 10:63

    Article  PubMed  CAS  Google Scholar 

  • Lu TY, Lu RM, Liao MY, Yu J, Chung CH, Kao CF, Wu HC (2010) Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. J Biol Chem 285:8719–8732

    Article  PubMed  CAS  Google Scholar 

  • Lund AH, van Lohuizen M (2004) Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol 16:239–246

    Article  PubMed  CAS  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  • Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  PubMed  CAS  Google Scholar 

  • Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL, Dynlacht BD, Reinberg D (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32:503–518

    Article  PubMed  CAS  Google Scholar 

  • McGarvey KM, Fahrner JA, Greene E, Martens J, Jenuwein T, Baylin SB (2006) Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res 66:3541–3549

    Article  PubMed  CAS  Google Scholar 

  • McGarvey KM, Van Neste L, Cope L, Ohm JE, Herman JG, Van Criekinge W, Schuebel KE, Baylin SB (2008) Defining a chromatin pattern that characterizes DNA-hypermethylated genes in colon cancer cells. Cancer Res 68:5753–5759

    Article  PubMed  CAS  Google Scholar 

  • Melcer S, Meshorer E (2010) Chromatin plasticity in pluripotent cells. Essays Biochem 48:245–262

    Article  PubMed  CAS  Google Scholar 

  • Metsuyanim S, Pode-Shakked N, Schmidt-Ott KM, Keshet G, Rechavi G, Blumental D, Dekel B (2008) Accumulation of malignant renal stem cells is associated with epigenetic changes in normal renal progenitor genes. Stem Cells 26:1808–1817

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55

    Article  PubMed  CAS  Google Scholar 

  • Mohr F, Dohner K, Buske C, Rawat VP (2011) TET genes: new players in DNA demethylation and important determinants for stemness. Exp Hematol 39:272–281

    Article  PubMed  CAS  Google Scholar 

  • Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, Yu J, Hebrok M, Hochedlinger K, Costello JF, Song JS, Ramalho-Santos M (2011) Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 13:541–549

    Article  PubMed  CAS  Google Scholar 

  • Omisanjo OA, Biermann K, Hartmann S, Heukamp LC, Sonnack V, Hild A, Brehm R, Bergmann M, Weidner W, Steger K (2007) DNMT1 and HDAC1 gene expression in impaired spermatogenesis and testicular cancer. Histochem Cell Biol 127:175–181

    Article  PubMed  CAS  Google Scholar 

  • Orlando V (2003) Polycomb, epigenomes, and control of cell identity. Cell 112:599–606

    Article  PubMed  CAS  Google Scholar 

  • Ozdag H, Teschendorff AE, Ahmed AA, Hyland SJ, Blenkiron C, Bobrow L, Veerakumarasivam A, Burtt G, Subkhankulova T, Arends MJ, Collins VP, Bowtell D, Kouzarides T, Brenton JD, Caldas C (2006) Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics 7:90

    Article  PubMed  Google Scholar 

  • Pereira CF, Piccolo FM, Tsubouchi T, Sauer S, Ryan NK, Bruno L, Landeira D, Santos J, Banito A, Gil J, Koseki H, Merkenschlager M, Fisher AG (2010) ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell 6:547–556

    Article  PubMed  CAS  Google Scholar 

  • Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Rada-Iglesias A, Enroth S, Andersson R, Wanders A, Pahlman L, Komorowski J, Wadelius C (2009) Histone H3 lysine 27 trimethylation in adult differentiated colon associated to cancer DNA hypermethylation. Epigenetics 4:107–113

    Article  PubMed  CAS  Google Scholar 

  • Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135:1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Rai K, Sarkar S, Broadbent TJ, Voas M, Grossmann KF, Nadauld LD, Dehghanizadeh S, Hagos FT, Li Y, Toth RK, Chidester S, Bahr TM, Johnson WE, Sklow B, Burt R, Cairns BR, Jones DA (2010) DNA demethylase activity maintains intestinal cells in an undifferentiated state following loss of APC. Cell 142:930–942

    Article  PubMed  CAS  Google Scholar 

  • Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416:552–556

    Article  PubMed  CAS  Google Scholar 

  • Ringrose L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134:223–232

    Article  PubMed  CAS  Google Scholar 

  • Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594

    Article  PubMed  CAS  Google Scholar 

  • Schiapparelli P, Enguita-German M, Balbuena J, Rey JA, Lazcoz P, Castresana JS (2010) Analysis of stemness gene expression and CD133 abnormal methylation in neuroblastoma cell lines. Oncol Rep 24:1355–1362

    PubMed  CAS  Google Scholar 

  • Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA (2010) DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463:563–567

    Article  PubMed  CAS  Google Scholar 

  • Sher F, Rossler R, Brouwer N, Balasubramaniyan V, Boddeke E, Copray S (2008) Differentiation of neural stem cells into oligodendrocytes: involvement of the polycomb group protein Ezh2. Stem Cells 26:2875–2883

    Article  PubMed  CAS  Google Scholar 

  • Shoae-Hassani A, Sharif S, Verdi J (2011) A neurosteroid, DHEA, could improves somatic cell reprogramming. Cell Biol Int 35(10):1037–10  41

    CAS  Google Scholar 

  • Shukla V, Vaissiere T, Herceg Z (2008) Histone acetylation and chromatin signature in stem cell identity and cancer. Mutat Res 637:1–15

    Article  PubMed  CAS  Google Scholar 

  • Sproul D, Nestor C, Culley J, Dickson JH, Dixon JM, Harrison DJ, Meehan RR, Sims AH, Ramsahoye BH (2011) Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer. Proc Natl Acad Sci U S A 108:4364–4369

    Article  PubMed  CAS  Google Scholar 

  • Tadokoro Y, Ema H, Okano M, Li E, Nakauchi H (2007) De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med 204:715–722

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Tan J, Huang H, Huang W, Li L, Guo J, Huang B, Lu J (2008) The genomic landscapes of histone H3-Lys9 modifications of gene promoter regions and expression profiles in human bone marrow mesenchymal stem cells. J Genet Genomics 35:585–593

    Article  PubMed  CAS  Google Scholar 

  • Teng IW, Hou PC, Lee KD, Chu PY, Yeh KT, Jin VX, Tseng MJ, Tsai SJ, Chang YD, Wu CS, Sun HS, Tsai KD, Jeng LB, Nephew KP, Huang TH, Hsiao SH, Leu YW (2011) Targeted methylation of two tumor suppressor genes is sufficient to transform mesenchymal stem cells into cancer stem/initiating cells. Cancer Res 71(13):4653–663

    Article  PubMed  CAS  Google Scholar 

  • Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–446

    Article  PubMed  CAS  Google Scholar 

  • Tiwari VK, McGarvey KM, Licchesi JD, Ohm JE, Herman JG, Schubeler D, Baylin SB (2008) PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 6:2911–2927

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge JJ, Snow JW, Kim J, Orkin SH (2009) DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 5:442–449

    Article  PubMed  CAS  Google Scholar 

  • Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer; the polycomb connection. Cell 118:409–418

    Article  PubMed  CAS  Google Scholar 

  • Van Emburgh BO, Robertson KD (2011) Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Res 39(12):4984–5002

    Article  PubMed  Google Scholar 

  • Wade PA (2004) Dynamic regulation of DNA methylation coupled transcriptional repression: BDNF regulation by MeCP2. Bioessays 26:217–220

    Article  PubMed  CAS  Google Scholar 

  • Walker E, Chang WY, Hunkapiller J, Cagney G, Garcha K, Torchia J, Krogan NJ, Reiter JF, Stanford WL (2010) Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 6:153–166

    Article  PubMed  CAS  Google Scholar 

  • Walker E, Manias JL, Chang WY, Stanford WL (2011) PCL2 modulates gene regulatory networks controlling self-renewal and commitment in embryonic stem cells. Cell Cycle 10:45–51

    Article  PubMed  CAS  Google Scholar 

  • Wani AA, Sharma N, Shouche YS, Bapat SA (2006) Nuclear-mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells. Oncogene 25:6336–6344

    Article  PubMed  CAS  Google Scholar 

  • Weishaupt H, Sigvardsson M, Attema JL (2010) Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells. Blood 115:247–256

    Article  PubMed  CAS  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158

    Article  PubMed  CAS  Google Scholar 

  • Xi S, Geiman TM, Briones V, Guang TY, Xu H, Muegge K (2009) Lsh participates in DNA methylation and silencing of stem cell genes. Stem Cells 27:2691–2702

    Article  PubMed  CAS  Google Scholar 

  • Xie H, Wang M, de Andrade A, Bonaldo MF, Galat V, Arndt K, Rajaram V, Goldman S, Tomita T, Soares MB (2011) Genome-wide quantitative assessment of variation in DNA methylation patterns. Nucleic Acids Res 39:4099–4108

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Watanabe A (2010) Epigenetic codes in stem cells and cancer stem cells. Adv Genet 70:177–199

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura A (2009) Stat1 phosphorylation is a molecular switch of Ras signaling and oncogenesis. Cell Cycle 8:1981–1982

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila A. Bapat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bapat, S.A. (2013). Epigenetic Regulation of Cancer Stem Cell Gene Expression. In: Kundu, T. (eds) Epigenetics: Development and Disease. Subcellular Biochemistry, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4525-4_18

Download citation

Publish with us

Policies and ethics