Skip to main content

Cdt1 and Geminin in DNA Replication Initiation

  • Chapter
  • First Online:
The Eukaryotic Replisome: a Guide to Protein Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 62))

Abstract

One of the mechanisms controlling the initiation of DNA replication is the dynamic interaction between Cdt1, which promotes assembly of the pre-replication license complex, and Geminin, which inhibits it. Specifically, Cdt1 cooperates with the cell cycle protein Cdc6 to promote loading of the minichromosome maintenance helicases (MCM) onto the chromatin-bound origin recognition complex (ORC), by directly interacting with the MCM complex, and by modulating histone acetylation and inducing chromatin unfolding. Geminin, on the other hand, prevents the loading of the MCM onto the ORC both by directly binding to Cdt1, and by modulating Cdt1 stability and activity. Protein levels of Geminin and Cdt1 are tightly regulated through the cell cycle, and the Cdt1-Geminin complex likely acts as a molecular switch that can enable or disable the firing of each origin of replication. In this review we summarize structural studies of Cdt1 and Geminin and subsequent insights into how this molecular switch may function to ensure DNA is faithfully replicated only once during S phase of each cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arentson E, Faloon P, Seo J, Moon E, Studts JM, Fremont DH, Choi K (2002) Oncogenic potential of the DNA replication licensing protein CDT1. Oncogene 21:1150–1158

    Article  PubMed  CAS  Google Scholar 

  • Arias EE, Walter JC (2006) PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat Cell Biol 8:84–90

    Article  PubMed  CAS  Google Scholar 

  • Ballabeni A, Melixetian M, Zamponi R, Masiero L, Marinoni F, Helin K (2004) Human geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis. EMBO J 23:3122–3132

    Article  PubMed  CAS  Google Scholar 

  • Ballabeni A, Zamponi R, Caprara G, Melixetian M, Bossi S, Masiero L, Helin K (2009) Human CDT1 associates with CDC7 and recruits CDC45 to chromatin during S phase. J Biol Chem 284:3028–3036

    Article  PubMed  CAS  Google Scholar 

  • Benjamin JM, Torke SJ, Demeler B, McGarry TJ (2004) Geminin has dimerization, Cdt1-binding, and destruction domains that are required for biological activity. J Biol Chem 279:45957–45968

    Article  PubMed  CAS  Google Scholar 

  • Blow JJ, Dutta A (2005) Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 6:476–486

    Article  PubMed  CAS  Google Scholar 

  • Boos A, Lee A, Thompson DM, Kroll KL (2006) Subcellular translocation signals regulate Geminin activity during embryonic development. Biol Cell 98:363–375

    Article  PubMed  CAS  Google Scholar 

  • Chen S, de Vries MA, Bell SP (2007) Orc6 is required for dynamic recruitment of Cdt1 during repeated Mcm2-7 loading. Genes Dev 21:2897–2907

    Article  PubMed  CAS  Google Scholar 

  • De Marco V, Gillespie PJ, Li A, Karantzelis N, Christodoulou E, Klompmaker R, van Gerwen S, Fish A, Petoukhov MV, Iliou MS, Lygerou Z, Medema RH, Blow JJ, Svergun DI, Taraviras S, Perrakis A (2009) Quaternary structure of the human Cdt1-Geminin complex regulates DNA replication licensing. Proc Natl Acad Sci USA 106:19807–19812

    PubMed  CAS  Google Scholar 

  • Del Bene F, Tessmar-Raible K, Wittbrodt J (2004) Direct interaction of geminin and Six3 in eye development. Nature 427:745–749

    Article  PubMed  CAS  Google Scholar 

  • Diffley JF (2010) The many faces of redundancy in DNA replication control. Cold Spring Harb Symp Quant Biol 75:135–142

    Article  PubMed  CAS  Google Scholar 

  • Gajiwala KS, Burley SK (2000) Winged helix proteins. Curr Opin Struct Biol 10:110–116

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PJ, Li A, Blow JJ (2001) Reconstitution of licensed replication origins on Xenopus sperm nuclei using purified proteins. BMC Biochem 2:15

    Article  PubMed  CAS  Google Scholar 

  • Glozak MA, Seto E (2009) Acetylation/deacetylation modulates the stability of DNA replication licensing factor Cdt1. J Biol Chem 284:11446–11453

    Article  PubMed  CAS  Google Scholar 

  • Havens CG, Walter JC (2009) Docking of a specialized PIP box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2. Mol Cell 35:93–104

    Article  PubMed  CAS  Google Scholar 

  • Hu J, McCall CM, Ohta T, Xiong Y (2004) Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nat Cell Biol 6:1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Jee J, Mizuno T, Kamada K, Tochio H, Chiba Y, Yanagi K, Yasuda G, Hiroaki H, Hanaoka F, Shirakawa M (2010) Structure and mutagenesis studies of the C-terminal region of licensing factor Cdt1 enable the identification of key residues for binding to replicative helicase Mcm proteins. J Biol Chem 285:15931–15940

    Article  PubMed  CAS  Google Scholar 

  • Kearsey SE, Cotterill S (2003) Enigmatic variations: divergent modes of regulating eukaryotic DNA replication. Mol Cell 12:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Khayrutdinov BI, Bae WJ, Yun YM, Lee JH, Tsuyama T, Kim JJ, Hwang E, Ryu KS, Cheong HK, Cheong C, Ko JS, Enomoto T, Karplus PA, Guntert P, Tada S, Jeon YH, Cho Y (2009) Structure of the Cdt1 C-terminal domain: conservation of the winged helix fold in replication licensing factors. Protein Sci 18:2252–2264

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, Jeong BC, Lee JH, Kee HJ, Kook H, Kim NS, Kim YH, Kim JK, Ahn KY, Kim KK (2006) A repressor complex, AP4 transcription factor and geminin, negatively regulates expression of target genes in nonneuronal cells. Proc Natl Acad Sci USA 103:13074–13079

    Article  PubMed  CAS  Google Scholar 

  • Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  PubMed  CAS  Google Scholar 

  • Kroll KL, Salic AN, Evans LM, Kirschner MW (1998) Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation. Development 125:3247–3258

    PubMed  CAS  Google Scholar 

  • Kueh AJ, Dixon MP, Voss AK, Thomas T (2011) HBO1 is required for H3K14 acetylation and normal transcriptional activity during embryonic development. Mol Cell Biol 31:845–860

    Article  PubMed  CAS  Google Scholar 

  • Kulartz M, Knippers R (2004) The replicative regulator protein geminin on chromatin in the HeLa cell cycle. J Biol Chem 279:41686–41694

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Hong B, Choi JM, Kim Y, Watanabe S, Ishimi Y, Enomoto T, Tada S, Cho Y (2004) Structural basis for inhibition of the replication licensing factor Cdt1 by geminin. Nature 430:913–917

    Article  PubMed  CAS  Google Scholar 

  • Lim JW, Hummert P, Mills JC, Kroll KL (2011) Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo. Development 138:33–44

    Article  PubMed  CAS  Google Scholar 

  • Liu E, Li X, Yan F, Zhao Q, Wu X (2004) Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem 279:17283–17288

    Article  PubMed  CAS  Google Scholar 

  • Luo L, Yang X, Takihara Y, Knoetgen H, Kessel M (2004) The cell-cycle regulator geminin inhibits Hox function through direct and polycomb-mediated interactions. Nature 427:749–753

    Article  PubMed  CAS  Google Scholar 

  • Lutzmann M, Mechali M (2008) MCM9 binds Cdt1 and is required for the assembly of prereplication complexes. Mol Cell 31:190–200

    Article  PubMed  CAS  Google Scholar 

  • Lutzmann M, Maiorano D, Mechali M (2006) A Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus. EMBO J 25:5764–5774

    Article  PubMed  CAS  Google Scholar 

  • Machida YJ, Hamlin JL, Dutta A (2005) Right place, right time, and only once: replication initiation in metazoans. Cell 123:13–24

    Article  PubMed  CAS  Google Scholar 

  • Markey M, Siddiqui H, Knudsen ES (2004) Geminin is targeted for repression by the retinoblastoma tumor suppressor pathway through intragenic E2F sites. J Biol Chem 279:29255–29262

    Article  PubMed  CAS  Google Scholar 

  • McGarry TJ (2002) Geminin deficiency causes a Chk1-dependent G2 arrest in Xenopus. Mol Biol Cell 13:3662–3671

    Article  PubMed  CAS  Google Scholar 

  • McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93:1043–1053

    Article  PubMed  CAS  Google Scholar 

  • Mechali M, Lutzmann M (2008) The cell cycle: now live and in color. Cell 132:341–343

    Article  PubMed  CAS  Google Scholar 

  • Melixetian M, Ballabeni A, Masiero L, Gasparini P, Zamponi R, Bartek J, Lukas J, Helin K (2004) Loss of Geminin induces rereplication in the presence of functional p53. J Cell Biol 165:473–482

    Article  PubMed  CAS  Google Scholar 

  • Merabet S, Hudry B, Saadaoui M, Graba Y (2009) Classification of sequence signatures: a guide to Hox protein function. Bioessays 31:500–511

    Article  PubMed  CAS  Google Scholar 

  • Miotto B, Struhl K (2008) HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev 22:2633–2638

    Article  PubMed  CAS  Google Scholar 

  • Miotto B, Struhl K (2010) HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 37:57–66

    Article  PubMed  CAS  Google Scholar 

  • Moutevelis E, Woolfson DN (2009) A periodic table of coiled-coil protein structures. J Mol Biol 385:726–732

    Article  PubMed  CAS  Google Scholar 

  • Narasimhachar Y, Coue M (2009) Geminin stabilizes Cdt1 during meiosis in Xenopus oocytes. J Biol Chem 284:27235–27242

    Article  PubMed  CAS  Google Scholar 

  • Nishitani H, Lygerou Z, Nishimoto T (2004) Proteolysis of DNA replication licensing factor Cdt1 in S-phase is performed independently of geminin through its N-terminal region. J Biol Chem 279:30807–30816

    Article  PubMed  CAS  Google Scholar 

  • Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, Obuse C, Tsurimoto T, Nakayama KI, Nakayama K, Fujita M, Lygerou Z, Nishimoto T (2006) Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J 25:1126–1136

    Article  PubMed  CAS  Google Scholar 

  • Ode KL, Fujimoto K, Kubota Y, Takisawa H (2011) Inter-origin cooperativity of geminin action establishes an all-or-none switch for replication origin licensing. Genes Cells 16:380–396

    Article  PubMed  CAS  Google Scholar 

  • Ohno Y, Yasunaga S, Ohtsubo M, Mori S, Tsumura M, Okada S, Ohta T, Ohtani K, Kobayashi M, Takihara Y (2010) Hoxb4 transduction down-regulates geminin protein, providing hematopoietic stem and progenitor cells with proliferation potential. Proc Natl Acad Sci USA 107:21529–21534

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo M, Yasunaga S, Ohno Y, Tsumura M, Okada S, Ishikawa N, Shirao K, Kikuchi A, Nishitani H, Kobayashi M, Takihara Y (2008) Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity. Proc Natl Acad Sci USA 105:10396–10401

    Article  PubMed  CAS  Google Scholar 

  • Okorokov AL, Orlova EV, Kingsbury SR, Bagneris C, Gohlke U, Williams GH, Stoeber K (2004) Molecular structure of human geminin. Nat Struct Mol Biol 11:1021–1022

    Article  PubMed  CAS  Google Scholar 

  • Papanayotou C, Mey A, Birot AM, Saka Y, Boast S, Smith JC, Samarut J, Stern CD (2008) A mechanism regulating the onset of Sox2 expression in the embryonic neural plate. PLoS Biol 6:e2

    Article  PubMed  Google Scholar 

  • Pefani DE, Dimaki M, Spella M, Karantzelis N, Mitsiki E, Kyrousi C, Symeonidou IE, Perrakis A, Taraviras S, Lygerou Z (2011) Idas, a novel phylogenetically conserved geminin-related protein, binds to geminin and is required for cell cycle progression. J Biol Chem 286:23234–46

    Article  PubMed  CAS  Google Scholar 

  • Randell JC, Bowers JL, Rodriguez HK, Bell SP (2006) Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell 21:29–39

    Article  PubMed  CAS  Google Scholar 

  • Roukos V, Kinkhabwala A, Colombelli J, Kotsantis P, Taraviras S, Nishitani H, Stelzer E, Bastiaens P, Lygerou Z (2011) Dynamic recruitment of licensing factor Cdt1 to sites of DNA damage. J Cell Sci 124:422–434

    Article  PubMed  CAS  Google Scholar 

  • Sakaue-Sawano A, Ohtawa K, Hama H, Kawano M, Ogawa M, Miyawaki A (2008) Tracing the silhouette of individual cells in S/G2/M phases with fluorescence. Chem Biol 15:1243–1248

    Article  PubMed  CAS  Google Scholar 

  • Saxena S, Yuan P, Dhar SK, Senga T, Takeda D, Robinson H, Kornbluth S, Swaminathan K, Dutta A (2004) A dimerized coiled-coil domain and an adjoining part of geminin interact with two sites on Cdt1 for replication inhibition. Mol Cell 15:245–258

    Article  PubMed  CAS  Google Scholar 

  • Seo S, Kroll KL (2006) Geminin’s double life: chromatin connections that regulate transcription at the transition from proliferation to differentiation. Cell Cycle 5:374–379

    Article  PubMed  CAS  Google Scholar 

  • Seo S, Herr A, Lim JW, Richardson GA, Richardson H, Kroll KL (2005) Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev 19:1723–1734

    Article  PubMed  CAS  Google Scholar 

  • Stillman B (2005) Origin recognition and the chromosome cycle. FEBS Lett 579:877–884

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto N, Tatsumi Y, Tsurumi T, Matsukage A, Kiyono T, Nishitani H, Fujita M (2004) Cdt1 phosphorylation by cyclin A-dependent kinases negatively regulates its function without affecting geminin binding. J Biol Chem 279:19691–19697

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto N, Kitabayashi I, Osano S, Tatsumi Y, Yugawa T, Narisawa-Saito M, Matsukage A, Kiyono T, Fujita M (2008) Identification of novel human Cdt1-binding proteins by a proteomics approach: proteolytic regulation by APC/CCdh1. Mol Biol Cell 19:1007–1021

    Article  PubMed  CAS  Google Scholar 

  • Takeda DY, Parvin JD, Dutta A (2005) Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. J Biol Chem 280:23416–23423

    Article  PubMed  CAS  Google Scholar 

  • Thepaut M, Maiorano D, Guichou JF, Auge MT, Dumas C, Mechali M, Padilla A (2004) Crystal structure of the coiled-coil dimerization motif of geminin: structural and functional insights on DNA replication regulation. J Mol Biol 342:275–287

    Article  PubMed  CAS  Google Scholar 

  • Truong LN, Wu X (2011) Prevention of DNA re-replication in eukaryotic cells. J Mol Cell Biol 3:13–22

    Article  PubMed  CAS  Google Scholar 

  • Tsuyama T, Tada S, Watanabe S, Seki M, Enomoto T (2005) Licensing for DNA replication requires a strict sequential assembly of Cdc6 and Cdt1 onto chromatin in Xenopus egg extracts. Nucleic Acids Res 33:765–775

    Article  PubMed  CAS  Google Scholar 

  • Waga S, Zembutsu A (2006) Dynamics of DNA binding of replication initiation proteins during de novo formation of pre-replicative complexes in Xenopus egg extracts. J Biol Chem 281:10926–10934

    Article  PubMed  CAS  Google Scholar 

  • Wei Z, Liu C, Wu X, Xu N, Zhou B, Liang C, Zhu G (2010) Characterization and structure determination of the Cdt1 binding domain of human minichromosome maintenance (Mcm) 6. J Biol Chem 285:12469–12473

    Article  PubMed  CAS  Google Scholar 

  • Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290:2309–2312

    Article  PubMed  CAS  Google Scholar 

  • Wolf E, Kim PS, Berger B (1997) MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci 6:1179–1189

    Article  PubMed  CAS  Google Scholar 

  • Wong PG, Glozak MA, Cao TV, Vaziri C, Seto E, Alexandrow M (2010) Chromatin unfolding by Cdt1 regulates MCM loading via opposing functions of HBO1 and HDAC11-geminin. Cell Cycle 9:4351–4363

    Article  PubMed  CAS  Google Scholar 

  • Xouri G, Squire A, Dimaki M, Geverts B, Verveer PJ, Taraviras S, Nishitani H, Houtsmuller AB, Bastiaens PI, Lygerou Z (2007) Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin. EMBO J 26:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Yanagi K, Mizuno T, You Z, Hanaoka F (2002) Mouse geminin inhibits not only Cdt1-MCM6 interactions but also a novel intrinsic Cdt1 DNA binding activity. J Biol Chem 277:40871–40880

    Article  PubMed  CAS  Google Scholar 

  • Yellajoshyula D, Patterson ES, Elitt MS, Kroll KL (2011) Geminin promotes neural fate acquisition of embryonic stem cells by maintaining chromatin in an accessible and hyperacetylated state. Proc Natl Acad Sci USA 108:3294–3299

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Depamphilis ML (2009) Selective killing of cancer cells by suppression of geminin activity. Cancer Res 69:4870–4877

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Chen Y, Dutta A (2004) Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol Cell Biol 24:7140–7150

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastassis Perrakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Caillat, C., Perrakis, A. (2012). Cdt1 and Geminin in DNA Replication Initiation. In: MacNeill, S. (eds) The Eukaryotic Replisome: a Guide to Protein Structure and Function. Subcellular Biochemistry, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4572-8_5

Download citation

Publish with us

Policies and ethics