Skip to main content

Coordinated Networks of microRNAs and Transcription Factors with Evolutionary Perspectives

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 774))

Abstract

MicroRNAs (miRNAs) and transcription factors (TFs) are two major classes of trans-regulators in gene regulatory networks. Coordination between miRNAs and TFs has been demonstrated by individual studies on developmental processes and the pathogenesis of various cancers. Systematic computational approaches have an advantage in elucidating global network features of the miRNA-TF coordinated regulation. miRNAs and TFs have distinct molecular and evolutionary properties. In particular, miRNA genes have a rapid turnover of birth-and-death processes during evolution, and their effects are widespread but modest. Therefore, miRNAs and TFs are considered to have different contributions to their coordination. The miRNA-TF coordinated feedforward circuits are considered to cause significant increases in redundancy but drastically reduce the target gene repertoire, which poses the question, to what extent is miRNA-TF coordination beneficial? Evolutionary analyses provide wide perspectives on the features of miRNA-TF coordinated regulatory networks at a systems level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

miRNA:

microRNA

TF:

transcription factor

TFBS:

transcription factor binding site

PSSM:

position-specific scoring matrix

PWM:

position-weight matrix

pri-miRNA:

primary miRNA

pre-miRNA:

precursor miRNA

RISC:

RNA-induced silencing complex

UTR:

untranslated region

HITS-CLIP:

high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation

PAR-CLIP:

photoactivatable-ribonucleoside-enhanced crosslinking and immuno­precipitation

TE:

transposable element

MITE:

miniature inverted-repeat transposable element

Myr:

million years

GO:

Gene Ontology

FFL:

feedforward loop

FFC:

feedforward circuit

Y1H:

yeast one-hybrid

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    CAS  PubMed  Google Scholar 

  2. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    CAS  PubMed  Google Scholar 

  3. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database Issue):D152–D157

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(Database Issue):D154–D158

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32(Database Issue):D109–D111

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10(4):252–63

    CAS  PubMed  Google Scholar 

  7. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    CAS  PubMed  Google Scholar 

  8. Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32(Database issue):D91–94

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I, Krogh A, Lenhard B, Sandelin A (2008) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 36(Database issue):D102–106

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Wingender E, Dietze P, Karas H, Knüppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24(1):238–241

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Matys V et al (2006) Transfac and its module transcompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34(Database issue):108–110

    Google Scholar 

  12. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    CAS  PubMed  Google Scholar 

  13. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    CAS  PubMed  Google Scholar 

  14. MacRae I, Zhou K, Li F, Repic A, Brooks A, Cande W, Adams P, Doudna J (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311(5758):195–198

    CAS  PubMed  Google Scholar 

  15. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123(4):631–640

    CAS  PubMed  Google Scholar 

  16. Stark A, Kheradpour P, Parts L, Brennecke J, Hodges E, Hannon GJ, Kellis M (2007) Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Res 17(12):1865–1879

    CAS  PubMed  Google Scholar 

  17. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    CAS  PubMed  Google Scholar 

  18. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23(16):3356–3364

    CAS  PubMed  Google Scholar 

  19. McDowall J, Hunter S (2011) InterPro protein classification. Methods Mol Biol 694:37–47

    CAS  PubMed  Google Scholar 

  20. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37(Database issue):D211–215

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Kummerfeld SK, Teichmann SA (2006) DBD: a transcription factor prediction database. Nucleic Acids Res 34(Database issue):D74–D81

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Reece-Hoyes JS, Deplancke B, Shingles J, Grove CA, Hope IA et al (2005) A compendium of C. elegans regulatory transcription factors: a resource for mapping transcription regulatory networks. Genome Biol 6:R110

    PubMed Central  PubMed  Google Scholar 

  23. Bentwich I et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770

    CAS  PubMed  Google Scholar 

  24. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 30(1):89–100

    Google Scholar 

  25. Berezikov E, Chung W, Willis J, Cuppen E, Lai E (2007) Mammalian mirtron genes. Mol Cell 28(2):328–336

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13

    CAS  PubMed  Google Scholar 

  27. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–5

    CAS  PubMed  Google Scholar 

  28. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    CAS  PubMed  Google Scholar 

  29. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284

    CAS  PubMed  Google Scholar 

  30. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Iwama H, Masaki T, Kuriyama S (2007) Abundance of microRNA target motifs in the 3’-UTRs of 20527 human genes. FEBS Lett 581(9):1805–1810

    CAS  PubMed  Google Scholar 

  32. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128

    CAS  PubMed  Google Scholar 

  33. Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O’Day E, Chowdhury D, Dykxhoorn DM, Tsai P, Hofmann O, Becker KG, Gorospe M, Hide W, Lieberman J (2009) miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3’UTR microRNA recognition elements. Mol Cell 35(5):610–625

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17(10):1169–1174

    CAS  PubMed  Google Scholar 

  35. Mangone M, Manoharan AP, Thierry-Mieg D, Thierry-Mieg J, Han T, Mackowiak SD, Mis E, Zegar C, Gutwein MR, Khivansara V, Attie O, Chen K, Salehi-Ashtiani K, Vidal M, Harkins TT, Bouffard P, Suzuki Y, Sugano S, Kohara Y, Rajewsky N, Piano F, Gunsalus KC, Kim JK (2010) The landscape of C. elegans 3’UTRs. Science 329(5990):432–435

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Jan CH, Friedman RC, Ruby JG, Bartel DP (2011) Formation, regulation and evolution of Caeno­rhabditis elegans 3’UTRs. Nature 469(7328):97–101

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310(5755):1817–1821

    CAS  PubMed  Google Scholar 

  38. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339(2):327–335

    CAS  PubMed  Google Scholar 

  41. Zhang R, Peng Y, Wang W, Su B (2007) Rapid evolution of an X-linked microRNA cluster in primates. Genome Res 17(5):612–617

    CAS  PubMed  Google Scholar 

  42. Li J, Liu Y, Dong D, Zhang Z (2010) Evolution of an X-linked primate-specific micro RNA cluster. Mol Biol Evol 27(3):671–683

    CAS  PubMed  Google Scholar 

  43. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of miRNA genes. PLoS One 2(2):e219

    PubMed Central  PubMed  Google Scholar 

  44. Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36(12):1282–1290

    CAS  PubMed  Google Scholar 

  45. Piriyapongsa J, Marino-Ramirez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176(2):1323–1337

    CAS  PubMed  Google Scholar 

  46. Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14(5):814–821

    CAS  PubMed  Google Scholar 

  47. Piriyapongsa J, Jordan IK (2007) A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One 2(2):e203

    PubMed Central  PubMed  Google Scholar 

  48. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563

    Google Scholar 

  49. Manak JR, Dike S, Sementchenko V, Kapranov P, Biemar F, Long J, Cheng J, Bell I, Ghosh S, Piccolboni A, Gingeras TR (2006) Biological function of unannotated transcription during the early development of Drosophila melanogaster. Nat Genet 38(10):1151–1158

    CAS  PubMed  Google Scholar 

  50. Lu J, Shen Y, Wu Q, Kumar S, He B, Shi S, Carthew RW, Wang SM, Wu CI (2008) The birth and death of microRNA genes in Drosophila. Nat Genet 40(3):351–355

    CAS  PubMed  Google Scholar 

  51. Berezikov E, Liu N, Flynt AS, Hodges E, Rooks M, Hannon GJ, Lai EC (2010) Evolutionary flux of canonical microRNAs and mirtrons in Drosophila. Nat Genet 42(1):6–9

    CAS  PubMed  Google Scholar 

  52. Lu J, Shen Y, Carthew RW, San MW, Wu C-I (2010) Reply to “Evolutionary flux of canonical microRNAs and mirtrons in Drosophila”. Nat Genet 42(1):9–10

    CAS  Google Scholar 

  53. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Wu CI, Shen Y, Tang T (2009) Evolution under canalization and the dual roles of microRNAs: a hypothesis. Genome Res 19(5):734–743

    CAS  PubMed  Google Scholar 

  55. Liang H, Li WH (2009) Lowly expressed human microRNA genes evolve rapidly. Mol Biol Evol 26(6):1195–1198

    CAS  PubMed  Google Scholar 

  56. Lu J, Fu Y, Kumar S, Shen Y, Zeng K, Xu A, Carthew R, Wu CI (2008) Adaptive evolution of newly emerged micro-RNA genes in Drosophila. Mol Biol Evol 25(5):929–938

    CAS  PubMed  Google Scholar 

  57. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    CAS  PubMed  Google Scholar 

  58. Eisenberg E, Levanon EY (2003) Human housekeeping genes are compact. Trends Genet 19(7):362–365

    CAS  PubMed  Google Scholar 

  59. Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3(12):e215

    PubMed Central  PubMed  Google Scholar 

  60. Nakahara K, Kim K, Sciulli C, Dowd SR, Minden JS, Carthew RW (2005) Targets of microRNA regulation in the Drosophila oocyte proteome. Proc Natl Acad Sci USA 102(34):12023–12028

    CAS  PubMed  Google Scholar 

  61. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63

    CAS  PubMed  Google Scholar 

  62. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Lynch M (2007) The evolution of genetic networks by non-adaptive processes. Nat Rev Genet 8(10):803–813

    CAS  PubMed  Google Scholar 

  64. Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci USA 104(Suppl 1):8597–8604

    CAS  PubMed  Google Scholar 

  65. Zuckerkandl E (1997) Neutral and nonneutral mutations: the creative mix–evolution of complexity in gene interaction systems. J Mol Evol 44(4):470

    CAS  PubMed  Google Scholar 

  66. Alon U (2006) Introduction to systems biology: design principles of biological circuits. CRC Press, Boca Raton

    Google Scholar 

  67. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68

    CAS  PubMed  Google Scholar 

  68. Milo R et al (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827

    CAS  PubMed  Google Scholar 

  69. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    CAS  PubMed  Google Scholar 

  70. Newman ME, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64:026118

    CAS  Google Scholar 

  71. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–1542

    CAS  PubMed  Google Scholar 

  72. Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26(5):753–767

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Aboobaker AA, Tomancak P, Patel N, Rubin GM, Lai EC (2005) Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci USA 102(50):18017–18022

    CAS  PubMed  Google Scholar 

  74. Baskerville S, Bartel DP (2005) Microarray profiling of micro-RNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11(3):241–247

    CAS  PubMed  Google Scholar 

  75. Li X, Carthew RW (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123(7):1267–1277

    CAS  PubMed  Google Scholar 

  76. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10):1902–1910

    CAS  PubMed  Google Scholar 

  77. Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu C, Huang ZJ, Nelson SB (2006) Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 9(1):99–107

    CAS  PubMed  Google Scholar 

  78. Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45(2):207–221

    CAS  PubMed  Google Scholar 

  79. Shalgi R, Lieber D, Oren M, Pilpel Y (2007) Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 3(7):e131

    PubMed Central  PubMed  Google Scholar 

  80. Hornstein E, Shomron N (2006) Canalization of development by microRNAs. Nat Genet 38(Suppl):S20–24

    CAS  PubMed  Google Scholar 

  81. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of MicroRNAs. Genome Res 19(1):92–105

    CAS  PubMed  Google Scholar 

  82. Chen K, Rajewsky N (2006) Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 38(12):1452–1456

    CAS  PubMed  Google Scholar 

  83. Iwama H, Gojobori T (2004) Highly conserved upstream sequences for transcription factor genes and implications for the regulatory network. Proc Natl Acad Sci USA 101(49):17156–17161

    CAS  PubMed  Google Scholar 

  84. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of Mammalian MicroRNA Targets. Cell 115(7):787–798

    CAS  PubMed  Google Scholar 

  85. Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A et al (2004) MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14(12):2486–2494

    CAS  PubMed  Google Scholar 

  86. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA et al (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101(16):6062–6067

    CAS  PubMed  Google Scholar 

  87. Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman M, Barber GP, Clawson H, Coelho A, Diekhans M, Dreszer TR, Giardine BM, Harte RA, Hillman-Jackson J, Hsu F, Kirkup V, Kuhn RM, Learned K, Li CH, Meyer LR, Pohl A, Raney BJ, Rosenbloom KR, Smith KE, Haussler D, Kent WJ (2011) The UCSC genome browser database: update 2011. Nucleic Acids Res 39(Database issue):D876–882

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M et al (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31(1):374–378

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Wingender E (2008) The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief Bioinform 9(4):326–332

    CAS  PubMed  Google Scholar 

  90. Martinez NJ, Ow MC, Barrasa MI, Hammell M, Sequerra R, Doucette-Stamm L, Roth FP, Ambros VR, Walhout AJ (2008) A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 22(18):2535–2549

    CAS  PubMed  Google Scholar 

  91. Barrasa MI, Vaglio P, Cavasino F, Jacotot L, Walhout AJM (2007) EDGEdb: a transcription factor–DNA interaction database for the analysis of C. elegans differential gene expression. BMC Genomics 8:21

    PubMed Central  PubMed  Google Scholar 

  92. Deplancke B, Mukhopadhyay A, Ao W, Elewa AM, Grove CA, Martinez NJ, Sequerra R, Doucette-Stam L, Reece-Hoyes JS, Hope IA et al (2006) A gene-centered C. elegans protein–DNA interaction network. Cell 125(6):1193–1205

    CAS  PubMed  Google Scholar 

  93. Vermeirssen V, Barrasa MI, Hidalgo C, Babon JAB, Sequerra R, Doucette-Stam L, Barabasi AL, Walhout AJM (2007) Transcription factor modularity in a gene-centered C. elegans core neuronal protein–DNA interaction network. Genome Res 17(7):1061–1071

    CAS  PubMed  Google Scholar 

  94. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) miRanda algorithm: MicroRNA targets in Drosophila. Genome Biol 5(1):R1

    PubMed Central  PubMed  Google Scholar 

  95. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11):e363

    PubMed Central  PubMed  Google Scholar 

  96. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) microRNA target predictions: the microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database Issue):D149–153

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) mirSVR predicted target site scoring method: comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11:R90

    PubMed Central  PubMed  Google Scholar 

  98. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517

    CAS  PubMed  Google Scholar 

  99. Krüger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(Web Server issue):W451–454

    PubMed Central  PubMed  Google Scholar 

  100. Grün D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N (2005) microRNA target predictions in seven Drosophila species. PLoS Comp Biol 1:e13

    Google Scholar 

  101. Lall S, Grün D, Krek A, Chen K, Wang YL, Dewey CN, Sood P, Colombo T, Bray N, Macmenamin P, Kao HL, Gunsalus KC, Pachter L, Piano F, Rajewsky N (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16(5):460–471

    CAS  PubMed  Google Scholar 

  102. Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H (2004) Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci 101(16):5934–5939

    CAS  PubMed  Google Scholar 

  103. Yu X, Lin J, Zack DJ, Mendell JT, Qian J (2008) Analysis of regulatory network topology reveals functionally distinct classes of microRNAs. Nucleic Acids Res 36(20):6494–6503

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Iwama H, Murao K, Imachi H, Ishida T (2011) Transcriptional double-autorepression feedforward circuits act for multicellularity and nervous system development. BMC Genomics 12:228

    PubMed Central  PubMed  Google Scholar 

  105. Hollenhorst PC, Shah AA, Hopkins C, Graves BJ (2007) Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev 21(15):1882–1894

    CAS  PubMed  Google Scholar 

  106. Ow MC, Martinez NJ, Olsen PH, Silverman HS, Barrasa MI, Conradt B, Walhout AJ, Ambros V (2008) The FLYWCH transcription factors FLH-1, FLH-2, and FLH-3 repress embryonic expression of microRNA genes in C. elegans. Genes Dev 22(18):2520–2534

    CAS  PubMed  Google Scholar 

  107. Martinez NJ, Walhout AJ (2009) The interplay between transcription factors and microRNAs in genome-scale regulatory networks. Bioessays 31(4):435–445

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5(5):396–400

    CAS  PubMed  Google Scholar 

  109. Iwama H, Murao K, Imachi H, Ishida T (2011) MicroRNA networks alter to conform to transcription factor networks adding redundancy and reducing the repertoire of target genes for coordinated regulation. Mol Biol Evol 28(1):639–646

    CAS  PubMed  Google Scholar 

  110. Iwama H, Hori Y, Matsumoto K, Murao K, Ishida T (2008) ReAlignerV: web-based genomic alignment tool with high specificity and robustness estimated by species-specific insertion sequences. BMC Bioinform 9:112

    Google Scholar 

  111. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, MacDonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014):226–230

    CAS  PubMed  Google Scholar 

  112. Karres JS, Hilgers V, Carrers I, Treisman J, Cohen SM (2007) The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131(1):136–145

    CAS  PubMed  Google Scholar 

  113. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    CAS  PubMed  Google Scholar 

  115. Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005) Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123(6):1133–1146

    CAS  PubMed  Google Scholar 

  116. Hornstein E, Mansfield JH, Yekta S, Hu JK, Harfe BD, McManus MT, Baskerville S, Bartel DP, Tabin CJ (2005) The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438(7068):671–674

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Grant-in-Aid for Scientific Research (MEXT) KAKENHI 23570273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisakazu Iwama M.D., D. Med. Sci. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Iwama, H. (2013). Coordinated Networks of microRNAs and Transcription Factors with Evolutionary Perspectives. In: Schmitz, U., Wolkenhauer, O., Vera, J. (eds) MicroRNA Cancer Regulation. Advances in Experimental Medicine and Biology, vol 774. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5590-1_10

Download citation

Publish with us

Policies and ethics