Skip to main content

Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation

  • Chapter
  • First Online:
The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 14))

Abstract

Sulfur is an essential element for the synthesis of cysteine, methionine, and other organo-sulfur compounds needed by living organisms. Additionally, some prokaryotes are capable of exploiting oxidation or reduction of inorganic sulfur compounds to energize cellular growth. Several anaerobic genera of Bacteria and Archaea produce hydrogen sulfide (H2S), as a result of using sulfate (SO 2 −4 ), elemental sulfur (S0), thiosulfate (S2O 2 −3 ), and tetrathionate (S4O 2 −6 ) as terminal electron acceptors. Some phototrophic and aerobic sulfur bacteria are capable of using electrons from oxidation of sulfide to support chemolithotrophic growth. For the most part, biosulfur reduction or oxidation requires unique enzymatic activities with metal cofactors participating in electron transfer. This review provides an examination of cytochromes, iron-sulfur proteins, and sirohemes participating in electron movement in diverse groups of sulfate-reducing, sulfur-reducing, and sulfide-oxidizing Bacteria and Archaea.

Please cite as: Met. Ions Life Sci. 14 (2014) 237–277

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Wang, Physiol. Rev. 2012, 92, 791–896.

    CAS  PubMed  Google Scholar 

  2. L. L. Barton, G. D. Fauque, Adv. Appl. Microbiol. 2009, 68, 41–98.

    CAS  PubMed  Google Scholar 

  3. R. Rabus, T. A. Hansen, F. Widdel, in The Prokaryotes, Vol. 2, Ecophysiology and Biochemistry, Eds M. Dworkin, S. Falkow, E. Rosenberg, K.-K. Scheifer, E. Stackebrandt, Springer, Berlin, 2006, pp. 659–768.

    Google Scholar 

  4. G. D. Fauque, in Biotechnology Handbooks, Vol. 8, Sulfate-Reducing Bacteria, Ed L.L. Barton, Plenum Press, New York, 1995, pp. 217–241.

    Google Scholar 

  5. J. Loubinoux, J.-P. Bronowicki, I. A. C. Pereira, J.-L. Mougenel, A. LeFaou, FEMS Microbiol. Ecol. 2002, 40, 107–112.

    CAS  PubMed  Google Scholar 

  6. G. Muyzer, A. J. M. Stams, Nature Rev. Microbiol. 2008, 6, 441–454.

    CAS  Google Scholar 

  7. B. Ollivier, J.-L. Cayol, G. Fauque, in Sulphate-Reducing Bacteria: Environmental and Engineered Systems, Eds L. L. Barton, W. A. Hamilton, Cambridge University Press, Cambridge, UK, 2007, pp. 305–328.

    Google Scholar 

  8. Y. A. Shen, R. Buick, D. E. Canfield, Nature 2001, 410, 77–81.

    CAS  PubMed  Google Scholar 

  9. Y. Shen, R. Buick, Earth-Sci. Rev. 2004, 64, 243–272.

    CAS  Google Scholar 

  10. G. Fauque, B. Ollivier, in Microbial Diversity and Bioprospecting, Ed A.T. Bull, ASM Press, Washington, D.C., 2004, pp. 169–176.

    Google Scholar 

  11. H. Castro, N. Williams, A. Ogram, FEMS Microbiol. Ecol. 2000, 31, 1–9.

    CAS  PubMed  Google Scholar 

  12. V. M. Gumerov, A Mardanov, A Beletsky, M. Prokofeva, E. A. Bonch-Osmolovskaya, N. Ravin, K. Skyrabin, J. Bacteriol. 2011, 193, 2355–2356.

    Google Scholar 

  13. L. Jabari, H. Gannoun, J.-L. Cayol, M. Hamdi, B. Ollivier, G. Fauque, M.-L. Fardeau, Int. J. Syst. Evol. Microbiol. 2013, 63, 2082–2087.

    CAS  PubMed  Google Scholar 

  14. H. Cypionka, Annu. Rev. Microbiol. 2000, 54, 827–848.

    CAS  PubMed  Google Scholar 

  15. G. Fauque, J. LeGall, L. L. Barton, in Variations in Autotrophic Life, Eds J. M. Shively, L. L. Barton, Academic Press, London, 1991, pp. 271–337.

    Google Scholar 

  16. J. LeGall, G. Fauque, in Biology of Anaerobic Microorganisms, Ed A. J. B. Zehnder, Wiley, New York, 1988, pp. 587–639.

    Google Scholar 

  17. J. J. G. Moura, P. Gonzalez, I. Moura, G. Fauque, in Sulphate-Reducing Bacteria: Environmental and Engineered Systems, Eds L. L. Barton, W. A. Hamilton, Cambridge University Press, Cambridge, UK, 2007, pp. 241–264.

    Google Scholar 

  18. H. D. Peck, Jr., Proc. Natl. Acad. Sci. USA 1959, 45, 701–708.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. D. R. Kremer, M. Veenhuis, G. Fauque, H. D. Peck, Jr., J. LeGall, J. Lampreia, J. J. Moura, T. A. Hansen, Arch. Microbiol. 1988, 150, 296–301.

    CAS  Google Scholar 

  20. J. Simon, P. M. H. Kroneck, Adv. Microbial Physiol. 2013, 62, 45–117.

    CAS  Google Scholar 

  21. G. Fauque, H. D. Peck, Jr., J. J. G. Moura, B. H. Huynh, Y. Berlier, D. V. DerVartanian, M. Teixeira, A. E. Przybila, P. A. Lespinat, I. Moura, J. LeGall, FEMS Microbiol. Rev. 1988, 54, 299–344.

    CAS  Google Scholar 

  22. J. J. G. Moura, I. Moura, M. Teixeira, A. V. Xavier, G. Fauque, J. LeGall, in Metal Ions in Biological Systems, Vol. 23, Nickel and Its Role in Biology, Ed H. Sigel, Marcel Dekker Inc., New York, 1988, pp. 285–314.

    Google Scholar 

  23. I. A. C. Pereira, A. V. Xavier, in Encyclopedia of Inorganic Chemistry, Ed R. B. King, Vol. 5, 2nd edn, Wiley, New York, 2005, pp. 3360–3376.

    Google Scholar 

  24. I. A. C. Pereira, in Microbial Sulfur Metabolism, Eds C. Dahl, C. G. Friedrich, Springer, Berlin, 2008, pp. 24–35.

    Google Scholar 

  25. G. D. Fauque, L. L. Barton, Adv. Microbial Physiol. 2012, 60, 1–90.

    Google Scholar 

  26. G. D. Fauque, Meth. Enzymol. 1994, 243, 353–367.

    CAS  Google Scholar 

  27. G. Fauque, O. Klimmek, A. Kröger, Meth. Enzymol. 1994, 243, 367–383.

    CAS  Google Scholar 

  28. A. Kletzin, T. Urich, F. Muller, T. M. Bandeiras, C. M. Gomez, J. Bioenerg. Biomem. 2004, 36, 77–91.

    CAS  Google Scholar 

  29. A. Kletzin, in Archaea: Evolution, Physiology, and Molecular Biology, Eds R. A. Garrett, H.-P. Klenk, Blackwell Publishing Ltd., Madden, MA, USA, 2007, pp. 261–274.

    Google Scholar 

  30. A. LeFaou, B. S. Rajagopal, L. Daniels, G. Fauque, FEMS Microbiol. Rev. 1990, 75, 351–382.

    CAS  Google Scholar 

  31. J. Boulègue, Phosphorus Sulfur Silicon Relat. Elem. 1978, 5, 127–128.

    Google Scholar 

  32. R. Hedderich, O. Klimmek, A. Kröger, R. Dirmeier, M. Keller, K. O. Stetter, FEMS Microbiol. Rev. 1999, 22, 353–381.

    Google Scholar 

  33. N. Pfennig, H. Biebl, Arch. Microbiol . 1976, 110, 3–12.

    Google Scholar 

  34. F. Widdel, N. Pfennig, in The Prokaryotes, Eds A. Balows, H. G. Trüper, M. Dworkin, W. Harder, K. H. Schleifer, 2nd edn, Vol. 4, New York, Springer, 1992, pp. 3379–3389.

    Google Scholar 

  35. A. Zöphel, M. C. Kennedy, H. Beinert, P. M. H. Kroneck, Arch. Microbiol. 1988, 150, 72–77.

    Google Scholar 

  36. A. Zöphel, M. C. Kennedy, H. Beinert, P. M. H. Kroneck, Eur. J. Biochem. 1991, 195, 849–856.

    PubMed  Google Scholar 

  37. H. Biebl, N. Pfennig, Arch. Microbiol. 1977, 112, 115–117.

    CAS  PubMed  Google Scholar 

  38. O. Ben Dhia Thabet, T. Wafa, K. Eltaief, J.-L. Cayol, M. Hamdi, G. Fauque, M.-L. Fardeau, Curr. Microbiol. 2011, 62, 486–491.

    Google Scholar 

  39. B. Ollivier, C. E. Hatchikian, G. Prensier, J. Guezennec, J.-L. Garcia, Int. J. Syst. Bacteriol. 1991, 41, 74–81.

    CAS  Google Scholar 

  40. R. Schauder, A. Kröger, Arch. Microbiol. 1993, 159, 491–497.

    CAS  Google Scholar 

  41. R. Thauer, K. Jungermann, K. Decker, Bacteriol. Rev. 1977, 41, 100–180.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. P. Schönheit, T. Schäfer, World J. Microbiol. Biotech. 1995, 11, 26–57.

    Google Scholar 

  43. K. O. Stetter, G. Gaag, Nature 1983, 305, 309–311.

    CAS  Google Scholar 

  44. K. Finster, J. Sulf. Chem. 2008, 29, 281–292.

    CAS  Google Scholar 

  45. F. Bak, N. Pfennig, Arch. Microbiol. 1987, 147, 184–189.

    CAS  Google Scholar 

  46. K. Finster, W. Liesack, B. Thamdrup, Appl. Environ. Microbiol. 1998, 64, 119–125.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. M. Kramer, H. Cypionka, Arch. Microbiol. 1989, 151, 232–237.

    Google Scholar 

  48. P. Philippot, M. Van Zuylen, K. Lepot, C. Fhomazzo, J. Farquhar, M. J. Van Kranendonk, Science 2007, 317, 1534–1537.

    CAS  PubMed  Google Scholar 

  49. G. Muyzer, J. G. Kuenen, L. A. Robertson, in The Prokaryotes – Prokaryotic Physiology and Biochemistry, Eds E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, F. Thompson, Springer-Verlag, Berlin, Heidelberg, 2013, pp. 555–588.

    Google Scholar 

  50. N.-U. Frigaard, C. Dahl, Adv. Microbial Physiol. 2009, 54, 103–200.

    CAS  Google Scholar 

  51. J. F. Imhoff, in Sulfur Metabolism in Phototrophic Organisms, Eds R. Hell, C. Dahl, D. Knaff, T. Leustek, Springer, The Netherlands, 2008, pp. 269–287.

    Google Scholar 

  52. D.Y. Sorokin, H. Banciu, L. A. Robertson, J. G. Kuenen, M. S. Muntyan, G. Muyzer, in The Prokaryotes – Prokaryotic Physiology and Biochemistry, Eds E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, F. Thompson, Springer-Verlag, Berlin, Heidelberg, 2013, pp. 529–554.

    Google Scholar 

  53. M. S. Vandiver, S. H. Snyder, J. Mol. Med. 2012, 90, 255–263.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. D. Julian, K. L April, S. Patel, J. R. Stein, S.E. Wohlgemuth, J. Experiment. Biol. 2005, 208, 4109–4122.

    Google Scholar 

  55. D. W. Kraus, J. E. Doeller, C.S. Powell, J. Experiment. Biol. 1996, 199, 1343–1352.

    CAS  Google Scholar 

  56. T. Bagarino, Aquat. Toxicol. 1992, 24, 21–62.

    Google Scholar 

  57. P. Nicholls, Biochim. Biophys. Acta 1975, 396, 24–35.

    CAS  PubMed  Google Scholar 

  58. R. O. Beauchamp, Jr., J. S. Bus, J. A. Popp, C. J. Boreiko, D. A. Andjelkovich, Crit. Rev. Toxicol. 1984, 13, 25–97.

    CAS  PubMed  Google Scholar 

  59. F. Widdel, in Biology of Anaerobic Microorganisms, Ed A. J. B. Zehnder, Wiley, New York, 1988, pp. 469–585.

    Google Scholar 

  60. S. M. Caffrey, G. Voordouw, Antonie van Leeuwenhoek. 2010, 97, 11–20.

    Google Scholar 

  61. J. M. Akagi, L. L. Campbell, J. Bacteriol. 1963, 86, 563–568.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. H. Nakazawa, A. Arakaki, S. Narita-Yamada, I. Yashiro, K. Jinno, N. Aoki, A. Tsuruyama, Y. Okamura, S. Tanikawa, N. Fujita, H. Takeyama, Genome Res. 2009, 19, 1801–1808.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. B. Suh, J. M. Akagi, J. Bacteriol. 1969, 99, 210–215.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. J. P. Lee, H. D. Peck, Jr., Biochem. Biophys. Res. Commun. 1971, 45, 583–589.

    CAS  PubMed  Google Scholar 

  65. J. M. Akagi, V. Adams, J. Bacteriol. 1973, 116, 392–396.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. K. Kobayashi, S. Tachibana, M. Ishimoto, J. Biochem. 1969, 65, 155–157.

    CAS  PubMed  Google Scholar 

  67. J.-P. Lee, J. LeGall, H. D. Peck, Jr., J. Bacteriol. 1973, 115, 529–542.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. R. H. Haschke, L. L. Campbell, J. Bacteriol. 1971, 106, 603–607.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. E. C. Hatchikian, J. G. Zeikus, J. Bacteriol. 1983, 153, 2111–1220.

    Google Scholar 

  70. W. Nakatsukasa, J. M. Akagi, J. Bacteriol. 1969, 98, 429–433.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. E. C. Hatchikian, Arch. Microbiol. 1975, 105, 249–256.

    CAS  PubMed  Google Scholar 

  72. R. M. Fitz, H. Cypionka, Arch. Microbiol. 1990, 154, 400–406.

    CAS  Google Scholar 

  73. M. Broco, M. Rousset, S. Oliveira, C. Rodrigues-Pousada, FEBS Lett. 2005, 579, 4803–4807.

    CAS  PubMed  Google Scholar 

  74. H.D. Peck, Jr, J. LeGall, Phil. Trans. R. Soc. B. 1982, 298, 443–466.

    Google Scholar 

  75. K. Parey, U. Demmer, E. Warkentin, A. Wynen, U. Ermler, C. Dahl, PLoS ONE 2013, 8: available on line, e74707. doi:10.1371/.

    Google Scholar 

  76. N. Sekulic, K. Dietrich, I. Paamann, S. Ort, M. Konrad, A. Lavie, J. Mol. Biol. 2007, 367, 488–500.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. C. Dahl, H-G. Koch, O. Keuken, H. G. Trüper, FEMS Microbiol. Lett. 1990, 67, 27–32.

    Google Scholar 

  78. O. Y. Gavel, S. A. Bursakov, J. J. Calvete, G. N. George, J. J. Moura, I. Moura, Biochemistry 1998, 37, 16225–16232.

    CAS  PubMed  Google Scholar 

  79. Y. Taguchi, M. Sugishima, K. Fukuyama, Biochemistry 2004, 43, 4111–4118.

    CAS  PubMed  Google Scholar 

  80. O. Y. Gavel, A. V. Kladova, S. A. Bursakov, J. M. Dias, S. Texeira, V. L. Shnyrov, J. J. G. Moura, I. Moura, M. J. Romão, J. J. Trincão, Acta Crystallogr. Sect. F, Struct. Biol. Cryst. Commun. 2008, 64, 593–595.

    Google Scholar 

  81. Y.-L. Chiang, Y.-C. Hsieh, J-Y. Fang, E.-H. Liu, Y.-C. Huang, P. Chuankhayan, J. Jeyakanthan, M.-Y. Liu, S. I. Chan, C.-J. Chen, J. Bacteriol. 2009, 191, 7597–7608.

    Google Scholar 

  82. G. Fritz, T. Büchert, P. M. H. Kroneck, J. Biol. Chem. 2002, 277, 26066–26073.

    CAS  PubMed  Google Scholar 

  83. B. Meyer, J. Kuever, PLoSONE 2008 3, available online, e1514.doi10.1371/journal.pone.0001514.

    Google Scholar 

  84. J. Lampreia, I. Moura, M. Teixeira, H. D. Peck, Jr., J. LeGall, B. H. Huynh, J. J. G. Moura, Eur. J. Biochem. 1990, 188, 653–664.

    CAS  PubMed  Google Scholar 

  85. A. R. Ramos, K. L. Keller, J. D. Wall, Front. Microbiol. 2012, 3, 137, available online, doi:10.3389/fmicb.2012.00137.

  86. G. M. Zane, H-c. B. Yen, J. D. Wall, Appl. Environ. Microbiol. 2010, 76, 5500–5509.

    Google Scholar 

  87. I. Moura, A. R. Lino, Meth. Enzymol. 1994, 243, 296–303.

    CAS  Google Scholar 

  88. M. J. Murphy, L. M. Siegel, J. Biol. Chem. 1973, 248, 6911–6919.

    CAS  PubMed  Google Scholar 

  89. A. Schiffer, K. Parey, E. Warkentin, K. Diederichs, H. Huber, K. O. Stetter, P. M. Kroneck, U. Ermler, J. Mol. Biol. 2008, 379, 1063–1074.

    CAS  PubMed  Google Scholar 

  90. J. Steuber, P. M. H. Kroneck, Inorg. Chim. Acta 1998, 276, 52–57.

    Google Scholar 

  91. G. Fritz, A. Schiffer, A. Behrens, T. Buchert, U. Ermler, P. M. H. Kroneck, in Microbial Sulfur Metabolism, Eds C. Dahl, C. G. Friedrich, Berlin, Springer-Verlag, 2008, pp. 13–23.

    Google Scholar 

  92. Y.-C. Hsieh, M.-L. Liu, V. C.-C. Wang, Y.-L. Chiang, E.-H. Liu, W. G. Wu, S. I. Shan, C.-J. Chen, Mol. Microbiol. 2010, 78, 1101–1116.

    CAS  PubMed  Google Scholar 

  93. T. F. Oliveira, E. Franklin, J. P. Afonso, A. R. Khan, N. J. Oldham, I. A. C. Pereira, M. Archer, Front. Microbiol. 2011, 2, 71 doi:10.3389.

    Google Scholar 

  94. F. Grein, I. A. C. Pereira, C. Dahl. J. Bacteriol. 2010, 192, 6369–6377.

    Google Scholar 

  95. T. F. Oliveira, C. Vornhein, P. M. Matias, S. S. Venceslau, I. A. C. Pereira, M. Archer, J. Struct. Biol. 2008, 164, 236–239.

    CAS  PubMed  Google Scholar 

  96. T. F. Oliveira, C. Vonrhein, P. M. Matias, S. S. Venceslau, I. A. C. Pereira, M. Archer, J. Biol. Chem. 2008, 283, 34141–34149.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. R. R. Karkhoff-Schweizer, M. Bruschi, G. Voordouw, Eur. J. Biochem. 1993, 211, 501–507.

    CAS  PubMed  Google Scholar 

  98. J. Ostrowski, J.-Y. Wu, D. C. Rueger, B. E. Miller, L. M. Siegel, N. M. Kredich, J. Biol. Chem. 1989, 264, 15726–15737.

    CAS  PubMed  Google Scholar 

  99. E. T. Adman, L. Sieker, L. Jensen, J. Biol. Chem. 1976, 248, 3987–3996.

    Google Scholar 

  100. M. Bruschi, F. Guerlesquin, FEMS Microbiol. Rev. 1988, 54, 155–176.

    CAS  Google Scholar 

  101. D. H. George, L. T. Hunt, L. S. L. Yeh, W. C. Barker, J. Mol. Evol. 1985, 22, 117–143.

    Google Scholar 

  102. I. Moura, J. LeGall, A. R. Lino, H. D. Peck, Jr., G. Fauque, A. V. Xavier, D. V. DerVartanian, J. J. G. Moura, B. H. Huynh, J. Am. Chem. Soc. 1988, 110, 1075–1082.

    CAS  Google Scholar 

  103. J. Steuber, H. Cypionka, P. M. H. Kroneck, Arch. Microbiol. 1994, 162, 255–260.

    CAS  Google Scholar 

  104. J. Steuber, A. F. Arendsen, W. R. Hagen, P. M. H. Kroneck, Eur. J. Biochem. 1995, 233, 873–879.

    CAS  PubMed  Google Scholar 

  105. B. M. Wolfe, S. Lui, J. A. Cowan, Eur. J. Biochem. 1994, 223, 79–89.

    CAS  PubMed  Google Scholar 

  106. A. J. Pierik, M. G. Duyvis, J. M. L. M. van Helvoort, R. B. J. Wolbert, W. R. Hagen, Eur. J. Biochem. 1992, 205, 111–115.

    CAS  PubMed  Google Scholar 

  107. R. H. Pires, S. S. Venceslao, F. Morais, M. Teixeira, A. V. Xavier, I. A. Pereira, Biochemistry 2006, 45, 249–262.

    CAS  PubMed  Google Scholar 

  108. R. R. Karkhoff-Schweizer, D. P. W. Huber, G. Voordouw, Appl. Env. Microbiol. 1995, 61, 290–296.

    CAS  Google Scholar 

  109. N. Mizuno, G. Voordouw, K. Miki, A. Sarai, Y. Higuchi, Structure, 2003, 11, 1133–1140.

    CAS  PubMed  Google Scholar 

  110. J. C. Mathews, R. Timkovich, M.-Y. Lin, J. LeGall, Biochemistry 1995, 34, 5248–5251.

    Google Scholar 

  111. P. A. Trudinger, J. Bacteriol. 1970, 104, 158–170.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Ø. Larsen, T. Lien, N. K. Birkeland, Extremophiles, 1999, 3, 63–70.

    CAS  PubMed  Google Scholar 

  113. D. V. DerVartanian, Meth. Enzymol. 1994, 243, 270–276.

    CAS  PubMed  Google Scholar 

  114. N. Klouche, O. Basso, J.-F. Lascourrèges, J.-L. Cayol, P. Thomas, G. Fauque, M.-L. Fardeau, M. Magot, Int. J. Syst. Evol. Microbiol. 2009, 59, 3100–3104.

    Google Scholar 

  115. Ø. Larsen, T. Lien, N. K. Birkeland, FEMS Microbiol. Lett. 2000, 186, 41–46.

    CAS  PubMed  Google Scholar 

  116. B. R. Crane, L. M. Siegel, E. D. Getzoff, Science, 1995, 270, 59–67.

    CAS  PubMed  Google Scholar 

  117. C. Dahl, N. M. Kredich, R. Deutzmann, H. G. Trüper, J. Gen. Microbiol. 1993, 139, 1817–1828.

    CAS  PubMed  Google Scholar 

  118. L. Debussche, D. Thibaut, B. Cameron, J. Crouzet, F. Blanche, J. Bacteriol. 1990, 172, 6239–6244.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. G. Fauque, A. Lino, M. Czechowski, L. Kang, D. V. DerVartanian, J. J. G. Moura, J. LeGall, I. Moura, Biochim. Biophys. Acta 1990, 1040, 112–118.

    CAS  PubMed  Google Scholar 

  120. E. C. Hatchikian, Meth. Enzymol. 1994, 243, 276–295.

    CAS  PubMed  Google Scholar 

  121. O. Haouari, M.-L. Fardeau, J.-L. Cayol, G. Fauque, C. Casiot, F. Elbaz-Poulichet, M. Hamdi, B. Ollivier, Syst. Appl. Microbiol. 2008, 31, 38–42.

    CAS  PubMed  Google Scholar 

  122. A. M. Stolzenberg, S. H. Strauss, R. H. Holm, J. Am. Chem. Soc. 1981, 103, 4763–4778.

    CAS  Google Scholar 

  123. C. Dahl, H. G. Trüper, Meth. Enzymol. 2001, 331, 427–441.

    CAS  PubMed  Google Scholar 

  124. B. B. Jørgensen, Science, 1990, 249, 152–154.

    PubMed  Google Scholar 

  125. L. Stoffels, M. Krehenbrink, B. C. Berks, G. Unden, J. Bacteriol. 2012, 194, 475–485.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. R. Starkey, Soil Sci. 1950, 70, 55–66.

    CAS  Google Scholar 

  127. S. E. Winter, P. Thiennimitr, M. G. Winter, B. P. Butler, D. L. Huseby, R. W. Crawford, J. M. Russell, C. L. Bevins, L. G. Adams, R. M. Tsolis, J. R. Roth, A. J. Bäumler, Nature 2010, 467, 426–429.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. E. F. Johnson, B. Mukhopadhyay, J. Biol. Chem. 2005, 280, 38776–38786.

    CAS  PubMed  Google Scholar 

  129. E. F. Johnson, B. Mukhopadhyay, Appl. Env. Microbiol. 2008, 74, 3591–3595.

    CAS  Google Scholar 

  130. H. Laue, M. Friedrich, J. Ruff, A. M. Cook, J. Bacteriol. 2001, 183, 1727–11733.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. G. Harrison, C. Curle, E. J. Laishley, Arch. Microbiol. 1984, 138, 72–78.

    CAS  PubMed  Google Scholar 

  132. V. L. Barbosa-Jefferson, F. J. Zhao, S. P. McGrath, N. Morgan, Soil Biol. Biochem. 1998, 30, 553–559.

    CAS  Google Scholar 

  133. E. L. Barrett, M. A. Clark, Microbiol. Rev. 1987, 51, 195–205.

    Google Scholar 

  134. M. Hinojosa-Leon, M. Dubourdieu, J. A. Sanchez-Crispin, M. Chippaux, Biochem. Biophys. Res. Commun. 1986, 136, 577–581.

    CAS  PubMed  Google Scholar 

  135. J. L. Burns and T. J. DiChristina, Appl. Environ. Microbiol. 2009, 75, 5209–5217.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. A. P. Hinsley, B. C. Berks, Microbiology 2002, 148, 3631–3638.

    CAS  PubMed  Google Scholar 

  137. P. Hallenbeck, M. A. Clark, E. L. Barrett, J. Bacteriol. 1989, 171, 3008–3015.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. C. J. Huang, E. L. Barrett, J. Bacteriol. 1991, 173, 1544–1553.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. L. M. Siegel, P.S. Davis, J. Biol. Chem. 1974, 249, 1587–1598.

    CAS  PubMed  Google Scholar 

  140. M. Kern, M. G. Klotz, J. Simon, Mol. Microbiol. 2011, 82, 1515–1530.

    CAS  PubMed  Google Scholar 

  141. S. Shirodkar, S. Reed, M. Romine, D. Saffarini, Environ. Microbiol. 2011, 158, 287–293.

    Google Scholar 

  142. H. L. Drake, J. M. Akagi, Biochem. Biophys. Res. Commun. 1976, 71, 1214–1219.

    CAS  PubMed  Google Scholar 

  143. B. H. Huynh, L. Kang, D. V. DerVartanian, H. D. Peck, Jr., J. LeGall, J. Biol. Chem. 1984, 259, 15373–15376.

    CAS  PubMed  Google Scholar 

  144. I. Moura, A. R. Lino, J. J. G. Moura, A. V. Xavier, G. Fauque, H. D. Peck, Jr., J. LeGall, Biochem. Biophys. Res. Commun. 1986, 141, 1032–1041.

    CAS  PubMed  Google Scholar 

  145. J. J. G. Moura, I. Moura, H. Santos, A. V. Xavier, M. Scandellari, J. LeGall, Biochem. Biophys. Res. Commun. 1982, 108, 1002–1009.

    CAS  PubMed  Google Scholar 

  146. G. Fauque, Doctorat d’Etat Thesis in Physical Sciences, University of Technology of Compiègne, France, 1985, 222 pages.

    Google Scholar 

  147. G. Fauque, D. Hervé, J. LeGall, Arch. Microbiol. 1979, 121, 261–264.

    CAS  PubMed  Google Scholar 

  148. R. Cammack, G. Fauque, J. J. G. Moura, J. LeGall, Biochim. Biophys. Acta 1984, 784, 68–74.

    CAS  Google Scholar 

  149. G. D. Fauque, L. L. Barton, J. LeGall, Sulphur in Biology: Ciba Foundation Symposium 1980, 72, 71–86.

    CAS  Google Scholar 

  150. A. S. Alves, C. M. Paquete, B. M. Fonseca, R. O. Louro, Metallomics 2011, 3, 349–353.

    CAS  PubMed  Google Scholar 

  151. I. A. C. Pereira, I. Pacheco, M.-Y. Liu, J. LeGall, A. V. Xavier, M. Teixeira, Eur. J. Biochem. 1997, 248, 323–328.

    CAS  PubMed  Google Scholar 

  152. S. Laska, F. Lottspeich, A. Kletzin, Microbiology 2003, 149, 2357–2371.

    CAS  PubMed  Google Scholar 

  153. M. Keller, R. Dirmeier, Meth. Enzymol. 2001, 331, 442–451.

    CAS  PubMed  Google Scholar 

  154. S. L. Bridger, S. M. Clarkson, K. Stirrett, M. B. Debarry, G. L. Lipscomb, G. J. Schut, J. Westpheling, R. A. Scott, M. W. W. Adams, J. Bacteriol. 2011, 193, 6498–6504.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. A. Kletzin, in Microbial Sulfur Metabolism, Eds C. Dahl, C. G. Friedrich, Springer, Berlin, 2008, pp. 184–201.

    Google Scholar 

  156. T. Urich, C. M. Gomes, A. Kletzin, C. Frazao, Science 2006, 311, 996–1000.

    CAS  PubMed  Google Scholar 

  157. W. Purschke, C. L. Schmidt, A. Petersen, G. Schafer, J. Bacteriol. 1997, 179, 1344–1353.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. J. A. Brito, F. L. Sousa, M. Stelter, T. M. Bandeiras, C. Vonrhein, M. Teixeira, M. M. Pereira, M. Archer, Biochemistry 2009, 48, 5613–5622.

    CAS  PubMed  Google Scholar 

  159. M. Schedel, M. Vanselow, H. G. Trüper, Arch. Microbiol. 1979, 121, 29–36

    CAS  Google Scholar 

  160. F. Grimm, B. Franz, C. Dahl, in Microbial Sulfur Metabolism, Eds C. Dahl, C. G. Friedrich, Springer, Berlin, 2008, pp. 101–116.

    Google Scholar 

  161. R. Hille, Chem. Rev. 1996, 96, 2757–2816

    CAS  PubMed  Google Scholar 

  162. U. Kappler, M. J. Maher, Cell. Mol. Life Sci. 2013, 70, 977–992.

    Google Scholar 

  163. H. Sakurai, T. Ogawa, M. Shiga, K. Inoue, Photosynth. Res. 2010, 104, 163–176.

    CAS  PubMed  Google Scholar 

  164. L. H. Gregersen, D. A Bryant, N.-U. Frigaard, Front. Microbiol. 2011, available online, doi: 10.3389/fmicb.2011.00116.

  165. J. P. Lee, C. Yi, J. LeGall, H. Peck, Jr, J. Bacteriol. 1973, 115, 453–455.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. A. F. Arendsen, M. F. Verhagen, R. B. Wolbert, A. J. Pierik, A. J. Stams, M. S. Jetten, W. R. Hagen, Biochemistry 1993, 32, 10323–10330.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Sequence data were produced by the US Department of Energy Joint Genome Institute http://www.jgi.doe.gov/ in collaboration with the user community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy D. Fauque .

Editor information

Editors and Affiliations

Abbreviations and Definitions

Abbreviations and Definitions

A. :

Acidianus

acetyl-CoA:

acetyl-coenzyme A

ADP:

adenosine 5′-diphosphate

Alc. :

Allochromatium

AMP:

adenosine 5′-monophosphate

APS:

adenosine 5'-phosphosulfate

APSR:

adenylylsulfate reductase

Ar. :

Archaeoglobus

aSiR:

assimilatory-type sulfite reductase

asr:

anaerobic sulfite reduction

ATP:

adenosine 5'-triphosphate

ATPS:

ATP sulfurylase

CSB:

colorless sulfur bacteria

D. :

Desulfovibrio

Dba. :

Desulfobacter

Dbu. :

Desulfobulbus

DMSO:

dimethylsulfoxide

Drm. :

Desulfuromonas

Dsm. :

Desulfomicrobium

dSiR:

dissimilatory sulfite reductase

Dst. :

Desulfotomaculum

D. vulgaris H:

Desulfovibrio vulgaris Hildenborough

ΔG 0' :

standard free energy change

E. :

Escherichia

E0' :

standard reduction potential

EPR:

electron paramagnetic resonance

EXAFS:

extended X-ray absorption fine structure

FAD:

flavin adenine dinucleotide

GSB:

green sulfur bacteria

MBX:

membrane-bound oxidoreductase complex

MGD:

molybdopterin guanine dinucleotide

MK:

menaquinone

Ms. :

Methanosarcina

NAD:

nicotinamide adenine dinucleotide

NADH:

nicotinamide adenine dinucleotide, reduced

NADPH:

nicotinamide adenine dinucleotide phosphate, reduced

NSR:

coenzyme A-dependent NADPH sulfur oxidoreductase

P. :

Pyrococcus

Pc.:

Paracoccus

Pi :

inorganic phosphate

PNSB:

purple non-sulfur bacteria

PPi :

inorganic pyrophosphate

PSB:

purple sulfur bacteria

PSR:

polysulfide reductase

Py :

Pyrodictium

Pyb. :

Pyrobaculum

S. :

Sulfurospirillum

Sal. :

Salmonella

SOB:

sulfide-oxidizing bacteria

SOR:

sulfur oxygenase reductase

SQR:

sulfide:quinone reductase

SR:

sulfur reductase

SRB:

sulfate-reducing bacteria

SRP:

sulfate-reducing prokaryotes

T. :

Thermodesulfobacterium

W. :

Wolinella

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barton, L.L., Fardeau, ML., Fauque, G.D. (2014). Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation. In: Kroneck, P., Torres, M. (eds) The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9269-1_10

Download citation

Publish with us

Policies and ethics