Skip to main content

Runx Family Genes in Tissue Stem Cell Dynamics

  • Chapter
  • First Online:
Book cover RUNX Proteins in Development and Cancer

Abstract

The Runx family genes play important roles in development and cancer, largely via their regulation of tissue stem cell behavior. Their involvement in two organs, blood and skin, is well documented. This review summarizes currently known Runx functions in the stem cells of these tissues. The fundamental core mechanism(s) mediated by Runx proteins has been sought; however, it appears that there does not exist one single common machinery that governs both tissue stem cells. Instead, Runx family genes employ multiple spatiotemporal mechanisms in regulating individual tissue stem cell populations. Such specific Runx requirements have been unveiled by a series of cell type-, developmental stage- or age-specific gene targeting studies in mice. Observations from these experiments revealed that the regulation of stem cells by Runx family genes turned out to be far more complex than previously thought. For instance, although it has been reported that Runx1 is required for the endothelial-to-hematopoietic cell transition (EHT) but not thereafter, recent studies clearly demonstrated that Runx1 is also needed during the period subsequent to EHT, namely at perinatal stage. In addition, Runx1 ablation in the embryonic skin mesenchyme eventually leads to complete loss of hair follicle stem cells (HFSCs) in the adult epithelium, suggesting that Runx1 facilitates the specification of skin epithelial stem cells in a cell extrinsic manner. Further in-depth investigation into how Runx family genes are involved in stem cell regulation is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso, L., & Fuchs, E. (2006). The hair cycle. Journal of Cell Science, 119(Pt 3), 391–393. doi:10.1242/jcs02793.

    Article  CAS  PubMed  Google Scholar 

  • Arora, N., Wenzel, P. L., McKinney-Freeman, S. L., Ross, S. J., Kim, P. G., Chou, S. S., et al. (2014). Effect of developmental stage of HSC and recipient on transplant outcomes. Developmental Cell, 29(5), 621–628. doi:10.1016/j.devcel.2014.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardin-Fried, F., Kummalue, T., Leijen, S., Collector, M. I., Ravid, K., & Friedman, A. D. (2004). AML1/RUNX1 increases during G1 to S cell cycle progression independent of cytokine-dependent phosphorylation and induces cyclin D3 gene expression. The Journal of Biological Chemistry, 279(15), 15678–15687. doi:10.1074/jbc.M310023200.

    Article  CAS  PubMed  Google Scholar 

  • Birbrair, A., & Frenette, P. S. (2016). Niche heterogeneity in the bone marrow. Annals of the New York Academy of Sciences, 1370(1), 82–96. doi:10.1111/nyas.13016.

    Article  PubMed  Google Scholar 

  • Bowie, M. B., McKnight, K. D., Kent, D. G., McCaffrey, L., Hoodless, P. A., & Eaves, C. J. (2006). Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. The Journal of Clinical Investigation, 116(10), 2808–2816. doi:10.1172/JCI28310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 303(5666), 2011–2015. doi:10.1126/science.1094637.

    Article  CAS  PubMed  Google Scholar 

  • Busch, K., Klapproth, K., Barile, M., Flossdorf, M., Holland-Letz, T., Schlenner, S. M., et al. (2015). Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature, 518(7540), 542–546. doi:10.1038/nature14242.

    Article  CAS  PubMed  Google Scholar 

  • Cai, X., Gaudet, J. J., Mangan, J. K., Chen, M. J., De Obaldia, M. E., Oo, Z., et al. (2011). Runx1 loss minimally impacts long-term hematopoietic stem cells. PloS One, 6(12), e28430. doi:10.1371/journal.pone.0028430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers, S. M., Shaw, C. A., Gatza, C., Fisk, C. J., Donehower, L. A., & Goodell, M. A. (2007). Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biology, 5(8), e201. doi:10.1371/journal.pbio.0050201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E., & Speck, N. A. (2009). Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature, 457(7231), 887–891. doi:10.1038/nature07619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, T., Heller, E., Beronja, S., Oshimori, N., Stokes, N., & Fuchs, E. (2012). An RNA interference screen uncovers a new molecule in stem cell self-renewal and long-term regeneration. Nature, 485(7396), 104–108. doi:10.1038/nature10940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien, Y., Scuoppo, C., Wang, X., Fang, X., Balgley, B., Bolden, J. E., et al. (2011). Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes & Development, 25(20), 2125–2136. doi:10.1101/gad.17276711.

    Article  CAS  Google Scholar 

  • Chin, D. W., Sakurai, M., Nah, G. S., Du, L., Jacob, B., Yokomizo, T., et al. (2016). RUNX1 haploinsufficiency results in granulocyte colony-stimulating factor hypersensitivity. Blood Cancer Journal, 6, e379. doi:10.1038/bcj.2015.105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitteti, B. R., Cheng, Y. H., Streicher, D. A., Rodriguez-Rodriguez, S., Carlesso, N., Srour, E. F., & Kacena, M. A. (2010). Osteoblast lineage cells expressing high levels of Runx2 enhance hematopoietic progenitor cell proliferation and function. Journal of Cellular Biochemistry, 111(2), 284–294. doi:10.1002/jcb.22694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen, J. L., Wright, D. E., Wagers, A. J., & Weissman, I. L. (2004). Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biology, 2(3), E75. doi:10.1371/journal.pbio.0020075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Copley, M. R., Babovic, S., Benz, C., Knapp, D. J., Beer, P. A., Kent, D. G., et al. (2013). The Lin28b-let-7-Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nature Cell Biology, 15(8), 916–925. doi:10.1038/ncb2783.

    Article  CAS  PubMed  Google Scholar 

  • Croker, B. A., Metcalf, D., Robb, L., Wei, W., Mifsud, S., DiRago, L., et al. (2004). SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity, 20(2), 153–165.

    Article  CAS  PubMed  Google Scholar 

  • Cumano, A., & Godin, I. (2007). Ontogeny of the hematopoietic system. Annual Review of Immunology, 25, 745–785. doi:10.1146/annurev.immunol.25.022106.141538.

    Article  CAS  PubMed  Google Scholar 

  • de Boer, J., Williams, A., Skavdis, G., Harker, N., Coles, M., Tolaini, M., et al. (2003). Transgenic mice with hematopoietic and lymphoid specific expression of Cre. European Journal of Immunology, 33(2), 314–325. doi:10.1002/immu.200310005.

    Article  PubMed  Google Scholar 

  • Deguchi, K., Yagi, H., Inada, M., Yoshizaki, K., Kishimoto, T., & Komori, T. (1999). Excessive extramedullary hematopoiesis in Cbfa1-deficient mice with a congenital lack of bone marrow. Biochemical and Biophysical Research Communications, 255(2), 352–359. doi:10.1006/bbrc.1999.0163.

    Article  CAS  PubMed  Google Scholar 

  • Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M., & de Haan, G. (2011). Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. The Journal of Experimental Medicine, 208(13), 2691–2703. doi:10.1084/jem.20111490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzierzak, E., & Speck, N. A. (2008). Of lineage and legacy: The development of mammalian hematopoietic stem cells. Nature Immunology, 9(2), 129–136. doi:10.1038/ni1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari, N., Riggio, A. I., Mason, S., McDonald, L., King, A., Higgins, T., et al. (2015). Runx2 contributes to the regenerative potential of the mammary epithelium. Scientific Reports, 5, 15658. doi:10.1038/srep15658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flachsbart, F., Caliebe, A., Kleindorp, R., Blanche, H., von Eller-Eberstein, H., Nikolaus, S., et al. (2009). Association of FOXO3A variation with human longevity confirmed in German centenarians. Proceedings of the National Academy of Sciences of the United States of America, 106(8), 2700–2705. doi:10.1073/pnas.0809594106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forni, M. F., Trombetta-Lima, M., & Sogayar, M. C. (2012). Stem cells in embryonic skin development. Biological Research, 45(3), 215–222. doi:10.4067/S0716-97602012000300003.

    Article  PubMed  Google Scholar 

  • Fusco, A., & Fedele, M. (2007). Roles of HMGA proteins in cancer. Nature Reviews. Cancer, 7(12), 899–910. doi:10.1038/nrc2271.

    Article  CAS  PubMed  Google Scholar 

  • Galindo, M., Pratap, J., Young, D. W., Hovhannisyan, H., Im, H. J., Choi, J. Y., et al. (2005). The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts. The Journal of Biological Chemistry, 280(21), 20274–20285. doi:10.1074/jbc.M413665200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger, H., de Haan, G., & Florian, M. C. (2013). The ageing haematopoietic stem cell compartment. Nature Reviews. Immunology, 13(5), 376–389. doi:10.1038/nri3433.

    Article  CAS  PubMed  Google Scholar 

  • Gekas, C., Dieterlen-Lievre, F., Orkin, S. H., & Mikkola, H. K. (2005). The placenta is a niche for hematopoietic stem cells. Developmental Cell, 8(3), 365–375. doi:10.1016/j.devcel.2004.12.016.

    Article  CAS  PubMed  Google Scholar 

  • Genovese, G., Kahler, A. K., Handsaker, R. E., Lindberg, J., Rose, S. A., Bakhoum, S. F., et al. (2014). Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. The New England Journal of Medicine, 371(26), 2477–2487. doi:10.1056/NEJMoa1409405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Georgiades, P., Ogilvy, S., Duval, H., Licence, D. R., Charnock-Jones, D. S., Smith, S. K., & Print, C. G. (2002). VavCre transgenic mice: A tool for mutagenesis in hematopoietic and endothelial lineages. Genesis, 34(4), 251–256. doi:10.1002/gene.10161.

    Article  CAS  PubMed  Google Scholar 

  • Glotzer, D. J., Zelzer, E., & Olsen, B. R. (2008). Impaired skin and hair follicle development in Runx2 deficient mice. Developmental Biology, 315(2), 459–473. doi:10.1016/j.ydbio.2008.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Growney, J. D., Shigematsu, H., Li, Z., Lee, B. H., Adelsperger, J., Rowan, R., et al. (2005). Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood, 106(2), 494–504. doi:10.1182/blood-2004-08-3280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haigis, M. C., & Guarente, L. P. (2006). Mammalian sirtuins – emerging roles in physiology, aging, and calorie restriction. Genes & Development, 20(21), 2913–2921. doi:10.1101/gad.1467506.

    Article  CAS  Google Scholar 

  • Hock, H., Hamblen, M. J., Rooke, H. M., Schindler, J. W., Saleque, S., Fujiwara, Y., & Orkin, S. H. (2004). Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature, 431(7011), 1002–1007. doi:10.1038/nature02994.

    Article  CAS  PubMed  Google Scholar 

  • Hoi, C. S., Lee, S. E., Lu, S. Y., McDermitt, D. J., Osorio, K. M., Piskun, C. M., et al. (2010). Runx1 directly promotes proliferation of hair follicle stem cells and epithelial tumor formation in mouse skin. Molecular and Cellular Biology, 30(10), 2518–2536. doi:10.1128/MCB.01308-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa, M., Asai, T., Saito, T., Seo, S., Yamazaki, I., Yamagata, T., et al. (2004). AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nature Medicine, 10(3), 299–304. doi:10.1038/nm997.

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki, H., Arai, F., Kubota, Y., Dahl, M., & Suda, T. (2010). Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver. Blood, 116(4), 544–553. doi:10.1182/blood-2009-08-240903.

    Article  CAS  PubMed  Google Scholar 

  • Jacob, B., Osato, M., Yamashita, N., Wang, C. Q., Taniuchi, I., Littman, D. R., et al. (2010). Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood, 115(8), 1610–1620. doi:10.1182/blood-2009-07-232249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffredo, T., Nottingham, W., Liddiard, K., Bollerot, K., Pouget, C., & de Bruijn, M. (2005). From hemangioblast to hematopoietic stem cell: an endothelial connection? Experimental Hematology, 33(9), 1029–1040. doi:10.1016/j.exphem.2005.06.005.

    Article  PubMed  Google Scholar 

  • Jaiswal, S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P. V., Mar, B. G., et al. (2014). Age-related clonal hematopoiesis associated with adverse outcomes. The New England Journal of Medicine, 371(26), 2488–2498. doi:10.1056/NEJMoa1408617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janzen, V., Forkert, R., Fleming, H. E., Saito, Y., Waring, M. T., Dombkowski, D. M., et al. (2006). Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature, 443(7110), 421–426. doi:10.1038/nature05159.

    CAS  PubMed  Google Scholar 

  • Kanaykina, N., Abelson, K., King, D., Liakhovitskaia, A., Schreiner, S., Wegner, M., & Kozlova, E. N. (2010). In vitro and in vivo effects on neural crest stem cell differentiation by conditional activation of Runx1 short isoform and its effect on neuropathic pain behavior. Upsala Journal of Medical Sciences, 115(1), 56–64. doi:10.3109/03009730903572065.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keyes, B. E., Segal, J. P., Heller, E., Lien, W. H., Chang, C. Y., Guo, X., et al. (2013). Nfatc1 orchestrates aging in hair follicle stem cells. Proceedings of the National Academy of Sciences of the United States of America, 110(51), E4950–E4959. doi:10.1073/pnas.1320301110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, J. A., Mendelson, A., Kunisaki, Y., Birbrair, A., Kou, Y., Arnal-Estape, A., et al. (2016). Fetal liver hematopoietic stem cell niches associate with portal vessels. Science, 351(6269), 176–180. doi:10.1126/science.aad0084.

    Article  CAS  PubMed  Google Scholar 

  • Kieusseian, A., Brunet de la Grange, P., Burlen-Defranoux, O., Godin, I., & Cumano, A. (2012). Immature hematopoietic stem cells undergo maturation in the fetal liver. Development, 139(19), 3521–3530. doi:10.1242/dev.079210.

    Article  CAS  PubMed  Google Scholar 

  • Kim, I., Saunders, T. L., & Morrison, S. J. (2007). Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell, 130(3), 470–483. doi:10.1016/j.cell.2007.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kissa, K., & Herbomel, P. (2010). Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature, 464(7285), 112–115. doi:10.1038/nature08761.

    Article  CAS  PubMed  Google Scholar 

  • Koh, C. P., Ng, C. E., Nah, G. S., Wang, C. Q., Tergaonkar, V., Matsumura, T., et al. (2015). Hematopoietic stem cell enhancer: a powerful tool in stem cell biology. Histology Histopathology, 30(6), 661–672. doi:10.14670/HH-30.661.

    CAS  PubMed  Google Scholar 

  • Komeno, Y., Yan, M., Matsuura, S., Lam, K., Lo, M. C., Huang, Y. J., et al. (2014). Runx1 exon 6-related alternative splicing isoforms differentially regulate hematopoiesis in mice. Blood, 123(24), 3760–3769. doi:10.1182/blood-2013-08-521252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89(5), 755–764.

    Article  CAS  PubMed  Google Scholar 

  • Lam, K., Muselman, A., Du, R., Harada, Y., Scholl, A. G., Yan, M., et al. (2014). Hmga2 is a direct target gene of RUNX1 and regulates expansion of myeloid progenitors in mice. Blood, 124(14), 2203–2212. doi:10.1182/blood-2014-02-554543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lausen, J., Liu, S., Fliegauf, M., Lubbert, M., & Werner, M. H. (2006). ELA2 is regulated by hematopoietic transcription factors, but not repressed by AML1-ETO. Oncogene, 25(9), 1349–1357. doi:10.1038/sj.onc.1209181.

    Article  CAS  PubMed  Google Scholar 

  • Lecuyer, E., & Hoang, T. (2004). SCL: From the origin of hematopoiesis to stem cells and leukemia. Experimental Hematology, 32(1), 11–24.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Hoi, C. S., Lilja, K. C., White, B. S., Lee, S. E., Shalloway, D., & Tumbar, T. (2013). Runx1 and p21 synergistically limit the extent of hair follicle stem cell quiescence in vivo. Proceedings of the National Academy of Sciences of the United States of America, 110(12), 4634–4639. doi:10.1073/pnas.1213015110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S. E., Sada, A., Zhang, M., McDermitt, D. J., Lu, S. Y., Kemphues, K. J., & Tumbar, T. (2014). High Runx1 levels promote a reversible, more-differentiated cell state in hair-follicle stem cells during quiescence. Cell Reports, 6(3), 499–513. doi:10.1016/j.celrep.2013.12.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levanon, D., Brenner, O., Negreanu, V., Bettoun, D., Woolf, E., Eilam, R., et al. (2001). Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogenesis. Mechanisms of Development, 109(2), 413–417.

    Article  CAS  PubMed  Google Scholar 

  • Li, F. Q., Person, R. E., Takemaru, K., Williams, K., Meade-White, K., Ozsahin, A. H., et al. (2004). Lymphoid enhancer factor-1 links two hereditary leukemia syndromes through core-binding factor alpha regulation of ELA2. The Journal of Biological Chemistry, 279(4), 2873–2884. doi:10.1074/jbc.M310759200.

    Article  CAS  PubMed  Google Scholar 

  • Liakhovitskaia, A., Gribi, R., Stamateris, E., Villain, G., Jaffredo, T., Wilkie, R., et al. (2009). Restoration of Runx1 expression in the Tie2 cell compartment rescues definitive hematopoietic stem cells and extends life of Runx1 knockout animals until birth. Stem Cells, 27(7), 1616–1624. doi:10.1002/stem.71.

    Article  CAS  PubMed  Google Scholar 

  • Liakhovitskaia, A., Lana-Elola, E., Stamateris, E., Rice, D. P., van't Hof, R. J., & Medvinsky, A. (2010). The essential requirement for Runx1 in the development of the sternum. Developmental Biology, 340(2), 539–546. doi:10.1016/j.ydbio.2010.02.005.

    Article  CAS  PubMed  Google Scholar 

  • Liakhovitskaia, A., Rybtsov, S., Smith, T., Batsivari, A., Rybtsova, N., Rode, C., et al. (2014). Runx1 is required for progression of CD41+ embryonic precursors into HSCs but not prior to this. Development, 141(17), 3319–3323. doi:10.1242/dev.110841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linggi, B., Muller-Tidow, C., van de Locht, L., Hu, M., Nip, J., Serve, H., et al. (2002). The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nature Medicine, 8(7), 743–750. doi:10.1038/nm726.

    Article  CAS  PubMed  Google Scholar 

  • Loonstra, A., Vooijs, M., Beverloo, H. B., Allak, B. A., van Drunen, E., Kanaar, R., et al. (2001). Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 98(16), 9209–9214. doi:10.1073/pnas.161269798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorz, C., Segrelles, C., & Paramio, J. M. (2009). On the origin of epidermal cancers. Current Molecular Medicine, 9(3), 353–364.

    Article  PubMed  Google Scholar 

  • Malanchi, I., Peinado, H., Kassen, D., Hussenet, T., Metzger, D., Chambon, P., et al. (2008). Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature, 452(7187), 650–653. doi:10.1038/nature06835.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Agosto, J. A., Mikkola, H. K., Hartenstein, V., & Banerjee, U. (2007). The hematopoietic stem cell and its niche: A comparative view. Genes & Development, 21(23), 3044–3060. doi:10.1101/gad.1602607.

    Article  CAS  Google Scholar 

  • Matsumura, H., Mohri, Y., Binh, N. T., Morinaga, H., Fukuda, M., Ito, M., et al. (2016). Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science, 351(6273), aad4395. doi:10.1126/science.aad4395.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo, J., Kimura, S., Yamamura, A., Koh, C., Hossain, M., Heng, D., Kohu, K., Voon, D., Hiai, H., Unno, M., So, J., Zhu, F., Srivastava, S., Meng, T., Yeoh, K., Osato, M., & Ito, Y. (2016) Identification of stem cells in the epithelium of the stomach corpus and antrum of mice. Gastroenterology, 152(1), 218–231. doi:10.1053/j.gastro.2016.09.018.

  • Mills, A. A., Zheng, B., Wang, X. J., Vogel, H., Roop, D. R., & Bradley, A. (1999). p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature, 398(6729), 708–713. doi:10.1038/19531.

    Article  CAS  PubMed  Google Scholar 

  • Morris, R. J., Liu, Y., Marles, L., Yang, Z., Trempus, C., Li, S., et al. (2004). Capturing and profiling adult hair follicle stem cells. Nature Biotechnology, 22(4), 411–417. doi:10.1038/nbt950.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A., & Weissman, I. L. (1996). The aging of hematopoietic stem cells. Nature Medicine, 2(9), 1011–1016.

    Article  CAS  PubMed  Google Scholar 

  • Mrozek, K., Marcucci, G., Nicolet, D., Maharry, K. S., Becker, H., Whitman, S. P., et al. (2012). Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. Journal of Clinical Oncology, 30(36), 4515–4523. doi:10.1200/JCO.2012.43.4738.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawa, M., Shimabe, M., Watanabe-Okochi, N., Arai, S., Yoshimi, A., Shinohara, A., et al. (2011). AML1/RUNX1 functions as a cytoplasmic attenuator of NF-kappaB signaling in the repression of myeloid tumors. Blood, 118(25), 6626–6637. doi:10.1182/blood-2010-12-326710.

    Article  CAS  PubMed  Google Scholar 

  • Ng, C. E., Yokomizo, T., Yamashita, N., Cirovic, B., Jin, H., Wen, Z., et al. (2010). A Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells. Stem Cells, 28(10), 1869–1881. doi:10.1002/stem.507.

    Article  CAS  PubMed  Google Scholar 

  • Niki, M., Okada, H., Takano, H., Kuno, J., Tani, K., Hibino, H., et al. (1997). Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor. Proceedings of the National Academy of Sciences of the United States of America, 94(11), 5697–5702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino, J., Kim, I., Chada, K., & Morrison, S. J. (2008). Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell, 135(2), 227–239. doi:10.1016/j.cell.2008.09.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North, T., Gu, T. L., Stacy, T., Wang, Q., Howard, L., Binder, M., et al. (1999). Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development, 126(11), 2563–2575.

    CAS  PubMed  Google Scholar 

  • Nowak, J. A., Polak, L., Pasolli, H. A., & Fuchs, E. (2008). Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell, 3(1), 33–43. doi:10.1016/j.stem.2008.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada, H., Watanabe, T., Niki, M., Takano, H., Chiba, N., Yanai, N., et al. (1998). AML1(−/−) embryos do not express certain hematopoiesis-related gene transcripts including those of the PU.1 gene. Oncogene, 17(18), 2287–2293. doi:10.1038/sj.onc.1202151.

    Article  CAS  PubMed  Google Scholar 

  • Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G., & Downing, J. R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84(2), 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Orkin, S. H., & Zon, L. I. (2008). Hematopoiesis: An evolving paradigm for stem cell biology. Cell, 132(4), 631–644. doi:10.1016/j.cell.2008.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortt, K., Raveh, E., Gat, U., & Sinha, S. (2008). A chromatin immunoprecipitation screen in mouse keratinocytes reveals Runx1 as a direct transcriptional target of DeltaNp63. Journal of Cellular Biochemistry, 104(4), 1204–1219. doi:10.1002/jcb.21700.

    Article  CAS  PubMed  Google Scholar 

  • Osato, M. (2014). An unsung runt 6e isoform for HSC expansion. Blood, 123(24), 3684–3686. doi:10.1182/blood-2014-05-572891.

    Article  CAS  PubMed  Google Scholar 

  • Osorio, K. M., Lee, S. E., McDermitt, D. J., Waghmare, S. K., Zhang, Y. V., Woo, H. N., & Tumbar, T. (2008). Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation. Development, 135(6), 1059–1068. doi:10.1242/dev.012799.

    Article  CAS  PubMed  Google Scholar 

  • Osorio, K. M., Lilja, K. C., & Tumbar, T. (2011). Runx1 modulates adult hair follicle stem cell emergence and maintenance from distinct embryonic skin compartments. The Journal of Cell Biology, 193(1), 235–250. doi:10.1083/jcb.201006068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottersbach, K., & Dzierzak, E. (2005). The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Developmental Cell, 8(3), 377–387. doi:10.1016/j.devcel.2005.02.001.

    Article  CAS  PubMed  Google Scholar 

  • Otto, F., Thornell, A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89(5), 765–771.

    Article  CAS  PubMed  Google Scholar 

  • Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423(6937), 302–305. doi:10.1038/nature01587.

    Article  CAS  PubMed  Google Scholar 

  • Puri, M. C., & Bernstein, A. (2003). Requirement for the TIE family of receptor tyrosine kinases in adult but not fetal hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12753–12758. doi:10.1073/pnas.2133552100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raveh, E., Cohen, S., Levanon, D., Groner, Y., & Gat, U. (2005). Runx3 is involved in hair shape determination. Developmental Dynamics, 233(4), 1478–1487. doi:10.1002/dvdy.20453.

    Article  CAS  PubMed  Google Scholar 

  • Raveh, E., Cohen, S., Levanon, D., Negreanu, V., Groner, Y., & Gat, U. (2006). Dynamic expression of Runx1 in skin affects hair structure. Mechanisms of Development, 123(11), 842–850. doi:10.1016/j.mod.2006.08.002.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes, K. E., Gekas, C., Wang, Y., Lux, C. T., Francis, C. S., Chan, D. N., et al. (2008). The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell, 2(3), 252–263. doi:10.1016/j.stem.2008.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano, R. A., & Sinha, S. (2014). Family matters: Sibling rivalry and bonding between p53 and p63 in cancer. Experimental Dermatology, 23(4), 238–239. doi:10.1111/exd.12356.

    Article  CAS  PubMed  Google Scholar 

  • Rossi, D. J., Bryder, D., Zahn, J. M., Ahlenius, H., Sonu, R., Wagers, A. J., & Weissman, I. L. (2005). Cell intrinsic alterations underlie hematopoietic stem cell aging. Proceedings of the National Academy of Sciences of the United States of America, 102(26), 9194–9199. doi:10.1073/pnas.0503280102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rybtsov, S., Sobiesiak, M., Taoudi, S., Souilhol, C., Senserrich, J., Liakhovitskaia, A., et al. (2011). Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. The Journal of Experimental Medicine, 208(6), 1305–1315. doi:10.1084/jem.20102419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salto-Tellez, M., Peh, B. K., Ito, K., Tan, S. H., Chong, P. Y., Han, H. C., et al. (2006). RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene, 25(58), 7646–7649. doi:10.1038/sj.onc.1209739.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, K., Yagi, H., Bronson, R. T., Tominaga, K., Matsunashi, T., Deguchi, K., et al. (1996). Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proceedings of the National Academy of Sciences of the United States of America, 93(22), 12359–12363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato, M., Morii, E., Komori, T., Kawahata, H., Sugimoto, M., Terai, K., et al. (1998). Transcriptional regulation of osteopontin gene in vivo by PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene, 17(12), 1517–1525. doi:10.1038/sj.onc.1202064.

    Article  CAS  PubMed  Google Scholar 

  • Scheitz, C. J., Lee, T. S., McDermitt, D. J., & Tumbar, T. (2012). Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. The EMBO Journal, 31(21), 4124–4139. doi:10.1038/emboj.2012.270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sennett, R., & Rendl, M. (2012). Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Seminars in Cell & Developmental Biology, 23(8), 917–927. doi:10.1016/j.semcdb.2012.08.011.

    Article  CAS  Google Scholar 

  • Shakibaei, M., Shayan, P., Busch, F., Aldinger, C., Buhrmann, C., Lueders, C., & Mobasheri, A. (2012). Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation. PloS One, 7(4), e35712. doi:10.1371/journal.pone.0035712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimshek, D. R., Kim, J., Hubner, M. R., Spergel, D. J., Buchholz, F., Casanova, E., et al. (2002). Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis, 32(1), 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Silver, D. P., & Livingston, D. M. (2001). Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Molecular Cell, 8(1), 233–243.

    Article  CAS  PubMed  Google Scholar 

  • Stadtfeld, M., & Graf, T. (2005). Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing. Development, 132(1), 203–213. doi:10.1242/dev.01558.

    Article  CAS  PubMed  Google Scholar 

  • Strom, D. K., Nip, J., Westendorf, J. J., Linggi, B., Lutterbach, B., Downing, J. R., et al. (2000). Expression of the AML-1 oncogene shortens the G(1) phase of the cell cycle. The Journal of Biological Chemistry, 275(5), 3438–3445.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J., Ramos, A., Chapman, B., Johnnidis, J. B., Le, L., Ho, Y. J., et al. (2014). Clonal dynamics of native haematopoiesis. Nature, 514(7522), 322–327. doi:10.1038/nature13824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, L., Wei, X., Zheng, L., Zeng, J., Liu, H., Yang, S., & Tan, H. (2016). Amplified HMGA2 promotes cell growth by regulating Akt pathway in AML. Journal of Cancer Research and Clinical Oncology, 142(2), 389–399. doi:10.1007/s00432-015-2036-9.

    Article  CAS  PubMed  Google Scholar 

  • Taoudi, S., Gonneau, C., Moore, K., Sheridan, J. M., Blackburn, C. C., Taylor, E., & Medvinsky, A. (2008). Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin+CD45+ pre-definitive HSCs. Cell Stem Cell, 3(1), 99–108. doi:10.1016/j.stem.2008.06.004.

    Article  CAS  PubMed  Google Scholar 

  • Tober, J., Yzaguirre, A. D., Piwarzyk, E., & Speck, N. A. (2013). Distinct temporal requirements for Runx1 in hematopoietic progenitors and stem cells. Development, 140(18), 3765–3776. doi:10.1242/dev.094961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toma, J. G., Akhavan, M., Fernandes, K. J., Barnabe-Heider, F., Sadikot, A., Kaplan, D. R., & Miller, F. D. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3(9), 778–784. doi:10.1038/ncb0901-778.

    Article  CAS  PubMed  Google Scholar 

  • Topley, G. I., Okuyama, R., Gonzales, J. G., Conti, C., & Dotto, G. P. (1999). p21(WAF1/Cip1) functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential. Proceedings of the National Academy of Sciences of the United States of America, 96(16), 9089–9094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trempus, C. S., Morris, R. J., Bortner, C. D., Cotsarelis, G., Faircloth, R. S., Reece, J. M., & Tennant, R. W. (2003). Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. The Journal of Investigative Dermatology, 120(4), 501–511. doi:10.1046/j.1523-1747.2003.12088.x.

    Article  CAS  PubMed  Google Scholar 

  • Tseng, P. C., Hou, S. M., Chen, R. J., Peng, H. W., Hsieh, C. F., Kuo, M. L., & Yen, M. L. (2011). Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. Journal of Bone and Mineral Research, 26(10), 2552–2563. doi:10.1002/jbmr.460.

    Article  CAS  PubMed  Google Scholar 

  • van Bragt, M. P., Hu, X., Xie, Y., & Li, Z. (2014). RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. eLife, 3, e03881. doi:10.7554/eLife.03881.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A. H., & Speck, N. A. (1996a). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 93(8), 3444–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Stacy, T., Miller, J. D., Lewis, A. F., Gu, T. L., Huang, X., et al. (1996b). The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell, 87(4), 697–708.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C. Q., Jacob, B., Nah, G. S., & Osato, M. (2010). Runx family genes, niche, and stem cell quiescence. Blood Cells, Molecules & Diseases, 44(4), 275–286. doi:10.1016/j.bcmd.2010.01.006.

    Article  CAS  Google Scholar 

  • Wang, C. Q., Motoda, L., Satake, M., Ito, Y., Taniuchi, I., Tergaonkar, V., & Osato, M. (2013). Runx3 deficiency results in myeloproliferative disorder in aged mice. Blood, 122(4), 562–566. doi:10.1182/blood-2012-10-460618.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C. Q., Krishnan, V., Tay, L. S., Chin, D. W., Koh, C. P., Chooi, J. Y., et al. (2014). Disruption of Runx1 and Runx3 leads to bone marrow failure and leukemia predisposition due to transcriptional and DNA repair defects. Cell Reports, 8(3), 767–782. doi:10.1016/j.celrep.2014.06.046.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C. Q., Chin, D. W., Chooi, J. Y., Chng, W. J., Taniuchi, I., Tergaonkar, V., & Osato, M. (2015). Cbfb deficiency results in differentiation blocks and stem/progenitor cell expansion in hematopoiesis. Leukemia, 29(3), 753–757. doi:10.1038/leu.2014.316.

    Article  CAS  PubMed  Google Scholar 

  • Worthley, D. L., Churchill, M., Compton, J. T., Tailor, Y., Rao, M., Si, Y., et al. (2015). Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell, 160(1–2), 269–284. doi:10.1016/j.cell.2014.11.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrone, D. A., Yoo, S., Chipps, L. K., & Moy, R. L. (2004). The expression of p63 in actinic keratoses, seborrheic keratosis, and cutaneous squamous cell carcinomas. Dermatologic Surgery, 30(10), 1299–1302. doi:10.1111/j.1524-4725.2004.30403.x.

    PubMed  Google Scholar 

  • Xie, M., Lu, C., Wang, J., McLellan, M. D., Johnson, K. J., Wendl, M. C., et al. (2014). Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nature Medicine, 20(12), 1472–1478. doi:10.1038/nm.3733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamura, Y., Lee, W. L., Inoue, K., Ida, H., & Ito, Y. (2006). RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. The Journal of Biological Chemistry, 281(8), 5267–5276. doi:10.1074/jbc.M512151200.

    Article  CAS  PubMed  Google Scholar 

  • Yang, A., Schweitzer, R., Sun, D., Kaghad, M., Walker, N., Bronson, R. T., et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature, 398(6729), 714–718. doi:10.1038/19539.

    Article  CAS  PubMed  Google Scholar 

  • Ye, M., Zhang, H., Amabile, G., Yang, H., Staber, P. B., Zhang, P., et al. (2013). C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nature Cell Biology, 15(4), 385–394. doi:10.1038/ncb2698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokomizo, T., & Dzierzak, E. (2010). Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos. Development, 137(21), 3651–3661. doi:10.1242/dev.051094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokomizo, T., Ogawa, M., Osato, M., Kanno, T., Yoshida, H., Fujimoto, T., et al. (2001). Requirement of Runx1/AML1/PEBP2alphaB for the generation of haematopoietic cells from endothelial cells. Genes to Cells, 6(1), 13–23.

    Article  CAS  PubMed  Google Scholar 

  • Yu, H., Lim, H. H., Tjokro, N. O., Sathiyanathan, P., Natarajan, S., Chew, T. W., et al. (2014). Chaperoning HMGA2 protein protects stalled replication forks in stem and cancer cells. Cell Reports, 6(4), 684–697. doi:10.1016/j.celrep.2014.01.014.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. V., Cheong, J., Ciapurin, N., McDermitt, D. J., & Tumbar, T. (2009). Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell, 5(3), 267–278. doi:10.1016/j.stem.2009.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, F., Li, X., Wang, W., Zhu, P., Zhou, J., He, W., et al. (2016). Tracing haematopoietic stem cell formation at single-cell resolution. Nature, 533(7604), 487–492. doi:10.1038/nature17997.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of MD2 Vivarium, NUS, for mouse husbandry. We thank Tumbar T., Nishimura E. and Speck NA for their careful and critical reading of our manuscript. This work was supported by National Medical Research Council, Biomedical Research Council, A*STAR (Agency of Science, Technology and Research), the National Research Foundation Singapore, the Singapore Ministry of Education under its Research Centres of Excellence initiative, and JSPS Kakenhi Grant Numbers JP15H04312 and JP16K14613, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motomi Osato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wang, C.Q., Mok, M.M.H., Yokomizo, T., Tergaonkar, V., Osato, M. (2017). Runx Family Genes in Tissue Stem Cell Dynamics. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_9

Download citation

Publish with us

Policies and ethics