Skip to main content

Significance of Mitochondria DNA Mutations in Diseases

  • Chapter
  • First Online:
Book cover Mitochondrial DNA and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1038))

Abstract

Mitochondria are essential double-membraned cytoplasmic organelles to support aerobic respiration and produce cellular energy by oxidative phosphorylation (OXPHOS). Mitochondrial functions are controlled by mitochondrial (mtDNA) and nuclear genomes (nDNA). Mutations of mtDNA result in mitochondrial dysfunction and multisystem diseases through compromising OXPHOS function directly by a point mutation or a large-scale mtDNA rearrangement. One or more of OXPHOS complexes are impaired and dysfunctional to affect tissues with high energy demands. mtDNA is more susceptible to oxidative damage and has more mutations than nDNA. Unlike diploid nDNA, mtDNA is a multi-copy genome transmitted and maternally inherited through oocyte. The multi-copy nature of mtDNA easily causes the heteroplasmy as a unique aspect of mtDNA, making mitochondrial diseases more complex and heterogeneous. mtDNA-associated mitochondrial dysfunction plays the important role in the development of multisystemic primary mitochondrial disease, neurodegeneration, and cancer. The present article overviews the occurrence of mtDNA mutation, interactions with other factors, and molecular mechanisms of mtDNA-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stehling O, Lill R. The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb Perspect Biol. 2013;5(8):a011312. PMID:23906713

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wallace DC, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–30. PMID:3201231

    Article  CAS  PubMed  Google Scholar 

  3. Sallevelt SC, de Die-Smulders CE, Hendrickx AT, et al. De novo mtDNA point mutations are common and have a low recurrence risk. J Med Genet. 2017;54(2):73–83. PMID:27450679

    Article  PubMed  Google Scholar 

  4. Ylikallio E, Suomalainen A. Mechanisms of mitochondrial diseases. Ann Med. 2012;44(1):41–59. PMID:21806499

    Article  CAS  PubMed  Google Scholar 

  5. Alston CL, et al. The genetics and pathology of mitochondrial disease. J Pathol. 2017;241(2):236–50. PMID:27659608

    Article  CAS  PubMed  Google Scholar 

  6. Calvo SE, Clauser KR, Mootha VK. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2016;44(D1):D1251–7. PMID:26450961

    Article  CAS  PubMed  Google Scholar 

  7. Giles RE, et al. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 1980;77(11):6715–9. PMID:6256757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015;16(9):530–42. PMID:26281784

    Article  CAS  PubMed  Google Scholar 

  9. Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene. 2006;25(34):4647–62. PMID:16892079

    Article  CAS  PubMed  Google Scholar 

  10. Lee HC, Chang CM, Chi CW. Somatic mutations of mitochondrial DNA in aging and cancer progression. Ageing Res Rev. 2010;9(Suppl 1):S47–58. PMID:20816876

    Article  CAS  PubMed  Google Scholar 

  11. Anderson S, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–65. PMID:7219534

    Article  CAS  PubMed  Google Scholar 

  12. Tuppen HA, et al. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 2010;1797(2):113–28. PMID:19761752

    Article  CAS  PubMed  Google Scholar 

  13. Schon EA, DiMauro S, Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet. 2012;13(12):878–90. PMID:23154810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elliott HR, et al. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008;83(2):254–60. PMID:18674747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shoffner JM, et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990;61(6):931–7. PMID:2112427

    Article  CAS  PubMed  Google Scholar 

  16. Santorelli FM, et al. The mutation at nt 8993 of mitochondrial DNA is a common cause of Leigh’s syndrome. Ann Neurol. 1993;34(6):827–34. PMID:8250532

    Article  CAS  PubMed  Google Scholar 

  17. Schapira AH, et al. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem. 1990;54(3):823–7. PMID:2154550

    Article  CAS  PubMed  Google Scholar 

  18. Chinnery PF, et al. Epigenetics, epidemiology and mitochondrial DNA diseases. Int J Epidemiol. 2012;41(1):177–87. PMID:22287136

    Article  PubMed  PubMed Central  Google Scholar 

  19. Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990;348(6302):651–3. PMID:2102678

    Article  CAS  PubMed  Google Scholar 

  20. Scaglia F, Wong LJ. Human mitochondrial transfer RNAs: role of pathogenic mutation in disease. Muscle Nerve. 2008;37(2):150–71. PMID:17999409

    Article  CAS  PubMed  Google Scholar 

  21. Holt IJ, et al. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet. 1990;46(3):428–33. PMID:2137962

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331(6158):717–9. PMID:2830540

    Article  CAS  PubMed  Google Scholar 

  23. Rotig A, et al. Spectrum of mitochondrial DNA rearrangements in the Pearson marrow-pancreas syndrome. Hum Mol Genet. 1995;4(8):1327–30. PMID:7581370

    Article  CAS  PubMed  Google Scholar 

  24. Kraytsberg Y, et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38(5):518–20. PMID:16604072

    Article  CAS  PubMed  Google Scholar 

  25. Wallace DC. Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen. 2010;51(5):440–50. PMID:20544884

    CAS  PubMed  Google Scholar 

  26. Polyak K, et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet. 1998;20(3):291–3. PMID:9806551

    Article  CAS  PubMed  Google Scholar 

  27. Wang X. New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol. 2016;32(5):359–61. PMID:27405768

    Article  PubMed  Google Scholar 

  28. Chen C, Shi L, Li Y, Wang X, Yang S. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol. 2016;32(3):169–84. PMID:27095254

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shi L, Zhu B, Xu M, Wang X. Selection of AECOPD-specific immunomodulatory biomarkers by integrating genomics and proteomics with clinical informatics. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9405-x. (Epub ahead of print). PMID: 28779230

  30. Gu J, Wang X. New future of cell biology and toxicology: thinking deeper. Cell Biol Toxicol. 2016;32(1):1–3. PMID:26874518

    Article  PubMed  Google Scholar 

  31. Wu Y, Geng XC, Wang JF, Miao YF, YL L, Li B. The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury. Cell Biol Toxicol. 2016;32(1):37–59. PMID:27027780

    Article  CAS  PubMed  Google Scholar 

  32. Zhu D, Liu Z, Pan Z, Qian M, Wang L, Zhu T, Xue Y, Wu DA. New method for classifying different phenotypes of kidney transplantation. Cell Biol Toxicol. 2016;32(4):323–32. PMID:27278387

    Article  CAS  PubMed  Google Scholar 

  33. Kikuchi S, Ninomiya T, Kohno T, Kojima T, Tatsumi H. Cobalt inhibits motility of axonal mitochondria and induces axonal degeneration in cultured dorsal root ganglion cells of rat. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9402-0. (Epub ahead of print). PMID:28656345

  34. Hsu HC, Li SJ, Chen CY, Chen MF. Eicosapentaenoic acid protects cardiomyoblasts from lipotoxicity in an autophagy-dependent manner. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9406-9. (Epub ahead of print). PMID:28741157

  35. Zhu LZ, Hou YJ, Zhao M, Yang MF, XT F, Sun JY, XY F, Shao LR, Zhang HF, Fan CD, Gao HL, Sun BL. Caudatin induces caspase-dependent apoptosis in human glioma cells with involvement of mitochondrial dysfunction and reactive oxygen species generation. Cell Biol Toxicol. 2016;32(4):333–45. PMID:27184666

    Article  CAS  PubMed  Google Scholar 

  36. Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang X, Chen C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol. 2016;32(6):469–82. PMID: 27423454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vedi M, Sabina EP. Assessment of hepatoprotective and nephroprotective potential of withaferin A on bromobenzene-induced injury in Swiss albino mice: possible involvement of mitochondrial dysfunction and inflammation. Cell Biol Toxicol. 2016;32(5):373–90. PMID: 27250656

    Article  CAS  PubMed  Google Scholar 

  38. Sanyal S, Das P, Law S. Effect of chronic pesticide exposure on murine cornea: a histopathological, cytological and flow cytometric approach to study ocular damage by xenobiotics. Cell Biol Toxicol. 2016;32(1):7–22. PMID: 26897134

    Article  CAS  PubMed  Google Scholar 

  39. Soltani B, Ghaemi N, Sadeghizadeh M, Najafi F. Curcumin confers protection to irradiated THP-1 cells while its nanoformulation sensitizes these cells via apoptosis induction. Cell Biol Toxicol. 2016;32(6):543–61. PMID: 27473378

    Article  CAS  PubMed  Google Scholar 

  40. Keta O, Bulat T, Golić I, Incerti S, Korać A, Petrović I, Ristić-Fira A. The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to γ-rays and/or erlotinib. Cell Biol Toxicol. 2016;32(2):83–101. PMID: 27026538

    Article  CAS  PubMed  Google Scholar 

  41. Fang H, Wang W. Could CRISPR be the solution for gene editing’s Gordian knot? Cell Biol Toxicol. 2016;32(6):465–7. PMID: 27614448

    Article  PubMed  Google Scholar 

  42. Wang W, Wang X, Single-cell CRISPR. Screening in drug resistance. Cell Biol Toxicol. 2017;33(3):207–10. PMID: 28474250

    Article  CAS  PubMed  Google Scholar 

  43. Sakuma T, Yamamoto T. Magic wands of CRISPR-lots of choices for gene knock-in. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9409-6. PMID: 28828704

  44. Wang W, Gao D, Wang X. Can single-cell RNA sequencing crack the mystery of cells? Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9404-y. (Epub ahead of print). PMID: 28733864

  45. Wang W, Zhu B, Wang X. Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9400-2. (Epub ahead of print). PMID: 28638956

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Editor(s) (if applicable) and The Author(s) 2018

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Z., Wang, X. (2017). Significance of Mitochondria DNA Mutations in Diseases. In: Sun, H., Wang, X. (eds) Mitochondrial DNA and Diseases. Advances in Experimental Medicine and Biology, vol 1038. Springer, Singapore. https://doi.org/10.1007/978-981-10-6674-0_15

Download citation

Publish with us

Policies and ethics