Skip to main content

Met Activation and Carcinogenesis

  • Chapter
  • First Online:

Part of the book series: Current Human Cell Research and Applications ((CHCRA))

Abstract

MET is a tyrosine kinase receptor that transduces intracellular signaling to activate the MAPK, PI3K-Akt, and cadherin pathways (among others). In cancer cells, MET is activated upon stimulation by its only ligand, hepatocyte growth factor/scatter factor (HGF/SF), or becomes active due to mutations or amplifications that produce constitutive activation of the MET kinase. The biological consequences of HGF/SF-MET signaling include cell proliferation, cell cycle progression, increased cell motility and invasive activity, and degradation of extracellular matrices, which can lead to oncogenesis. Aberrant MET signaling contributes to the carcinogenesis of hereditary cancers and also plays a major role in the spread of cancer cells; such signaling indicates a poor prognosis for cancer patients. Genetically engineered mouse models are important tools for studying the spontaneous development of tumors mediated by HGF/SF-MET signaling. Such tumors include carcinomas, sarcomas, and lymphomas, demonstrating the breadth of MET signaling as driving force of cancer. In this chapter, we will discuss the role of HGF/SF-MET signaling in carcinogenesis and the animal models used in developing therapeutic strategies that target the HGF/SF-MET signaling pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

MET:

human MET

Met:

mouse Met

References

  1. Park M, Dean M, Cooper CS, Schmidt M, O’Brien SJ, Blair DG, et al. Mechanism of met oncogene activation. Cell. 1986;45:895–904.

    Article  CAS  PubMed  Google Scholar 

  2. Stoker M, Gherardi E, Perryman M, Gray J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 1987;327:239–42.

    Article  CAS  PubMed  Google Scholar 

  3. Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989;342:440–3.

    Article  CAS  PubMed  Google Scholar 

  4. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature. 1995;376:768–71.

    Article  CAS  PubMed  Google Scholar 

  5. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373:702–5.

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373:699–702.

    Article  CAS  PubMed  Google Scholar 

  7. Birchmeier C, Brohmann H. Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol. 2000;12:725–30.

    Article  CAS  PubMed  Google Scholar 

  8. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4:915–25.

    Article  CAS  PubMed  Google Scholar 

  9. Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol. 2000;149:1419–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lozano E, Frasa MA, Smolarczyk K, Knaus UG, Braga VM. PAK is required for the disruption of E-cadherin adhesion by the small GTPase Rac. J Cell Sci. 2008;121:933–8.

    Article  CAS  PubMed  Google Scholar 

  11. Bosse T, Ehinger J, Czuchra A, Benesch S, Steffen A, Wu X, et al. Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways. Mol Cell Biol. 2007;27:6615–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakkab D, Lewitzky M, Posern G, Schaeper U, Sachs M, Birchmeier W, et al. Signaling of hepatocyte growth factor/scatter factor (HGF) to the small GTPase Rap1 via the large docking protein Gab1 and the adapter protein CRKL. J Biol Chem. 2000;275:10772–8.

    Article  CAS  PubMed  Google Scholar 

  13. Fan S, Ma YX, Gao M, Yuan RQ, Meng Q, Goldberg ID, et al. The multisubstrate adapter Gab1 regulates hepatocyte growth factor (scatter factor)-c-Met signaling for cell survival and DNA repair. Mol Cell Biol. 2001;21:4968–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiao GH, Jeffers M, Bellacosa A, Mitsuuchi Y, Vande Woude GF, Testa JR. Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A. 2001;98:247–52.

    Article  CAS  PubMed  Google Scholar 

  15. Wickramasinghe D, Kong-Beltran M. Met activation and receptor dimerization in cancer: a role for the Sema domain. Cell Cycle. 2005;4:683–5.

    Article  CAS  PubMed  Google Scholar 

  16. Kong-Beltran M, Stamos J, Wickramasinghe D. The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell. 2004;6:75–84.

    Article  CAS  PubMed  Google Scholar 

  17. Stamos J, Lazarus RA, Yao X, Kirchhofer D, Wiesmann C. Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO J. 2004;23:2325–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Merchant M, Ma X, Maun HR, Zheng Z, Peng J, Romero M, et al. Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Natl Acad Sci U S A. 2013;110:E2987–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tolbert WD, Daugherty J, Gao C, Xie Q, Miranti C, Gherardi E, et al. A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist. Proc Natl Acad Sci U S A. 2007;104:14592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zioncheck TF, Richardson L, Liu J, Chang L, King KL, Bennett GL, et al. Sulfated oligosaccharides promote hepatocyte growth factor association and govern its mitogenic activity. J Biol Chem. 1995;270:16871–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kanematsu A, Yamamoto S, Ozeki M, Noguchi T, Kanatani I, Ogawa O, et al. Collagenous matrices as release carriers of exogenous growth factors. Biomaterials. 2004;25:4513–20.

    Article  CAS  PubMed  Google Scholar 

  22. Nusrat A, Parkos CA, Bacarra AE, Godowski PJ, Delp-Archer C, Rosen EM, et al. Hepatocyte growth factor/scatter factor effects on epithelia. Regulation of intercellular junctions in transformed and nontransformed cell lines, basolateral polarization of c-met receptor in transformed and natural intestinal epithelia, and induction of rapid wound repair in a transformed model epithelium. J Clin Invest. 1994;93:2056–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Danilkovitch-Miagkova A, Zbar B. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J Clin Invest. 2002;109:863–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iwazawa T, Shiozaki H, Doki Y, Inoue M, Tamura S, Matsui S, et al. Primary human fibroblasts induce diverse tumor invasiveness: involvement of HGF as an important paracrine factor. Jpn J Cancer Res. 1996;87:1134–42.

    Article  CAS  PubMed  Google Scholar 

  25. Kataoka H, Tanaka H, Nagaike K, Uchiyama S, Itoh H. Role of cancer cell-stroma interaction in invasive growth of cancer cells. Hum Cell. 2003;16:1–14.

    Article  PubMed  Google Scholar 

  26. Tyan SW, Kuo WH, Huang CK, Pan CC, Shew JY, Chang KJ, et al. Breast cancer cells induce cancer-associated fibroblasts to secrete hepatocyte growth factor to enhance breast tumorigenesis. PLoS One. 2011;6:e15313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jia CC, Wang TT, Liu W, Fu BS, Hua X, Wang GY, et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One. 2013;8:e63243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grugan KD, Miller CG, Yao Y, Michaylira CZ, Ohashi S, Klein-Szanto AJ, et al. Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion. Proc Natl Acad Sci U S A. 2010;107:11026–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tamura M, Arakaki N, Tsubouchi H, Takada H, Daikuhara Y. Enhancement of human hepatocyte growth factor production by interleukin-1 alpha and −1 beta and tumor necrosis factor-alpha by fibroblasts in culture. J Biol Chem. 1993;268:8140–5.

    CAS  PubMed  Google Scholar 

  30. Ohnishi T, Suwa M, Oyama T, Arakaki N, Torii M, Daikuhara Y. Prostaglandin E2 predominantly induces production of hepatocyte growth factor/scatter factor in human dental pulp in acute inflammation. J Dent Res. 2000;79:748–55.

    Article  CAS  PubMed  Google Scholar 

  31. Rosen EM, Joseph A, Jin L, Rockwell S, Elias JA, Knesel J, et al. Regulation of scatter factor production via a soluble inducing factor. J Cell Biol. 1994;127:225–34.

    Article  CAS  PubMed  Google Scholar 

  32. To, Y, Dohi M, Matsumoto K, Tanaka R, Sato A, Nakagome K, et al. A two-way interaction between hepatocyte growth factor and interleukin-6 in tissue invasion of lung cancer cell line. Am J Respir Cell Mol Biol. 2002;27:220–6.

    Article  Google Scholar 

  33. Cortner J, Vande Woude GF, Rong S. The Met-HGF/SF autocrine signaling mechanism is involved in sarcomagenesis. EXS. 1995;74:89–121.

    CAS  PubMed  Google Scholar 

  34. Vande Woude GF, Jeffers M, Cortner J, Alvord G, Tsarfaty I, Resau J. Met-HGF/SF: tumorigenesis, invasion and metastasis. Ciba Found Symp. 1997;212:119–30; discussion 130–112, 148–154.

    Google Scholar 

  35. Rahimi N, Tremblay E, McAdam L, Park M, Schwall R, Elliott B. Identification of a hepatocyte growth factor autocrine loop in a murine mammary carcinoma. Cell Growth Differ. 1996;7:263–70.

    CAS  PubMed  Google Scholar 

  36. Kammula US, Kuntz EJ, Francone TD, Zeng Z, Shia J, Landmann RG, et al. Molecular co-expression of the c-Met oncogene and hepatocyte growth factor in primary colon cancer predicts tumor stage and clinical outcome. Cancer Lett. 2007;248:219–28.

    Article  CAS  PubMed  Google Scholar 

  37. Yi S, Tsao MS. Activation of hepatocyte growth factor-met autocrine loop enhances tumorigenicity in a human lung adenocarcinoma cell line. Neoplasia. 2000;2:226–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong AS, Pelech SL, Woo MM, Yim G, Rosen B, Ehlen T, et al. Coexpression of hepatocyte growth factor-Met: an early step in ovarian carcinogenesis? Oncogene. 2001;20:1318–28.

    Article  CAS  PubMed  Google Scholar 

  39. Wojcik EJ, Sharifpoor S, Miller NA, Wright TG, Watering R, Tremblay EA, et al. A novel activating function of c-Src and Stat3 on HGF transcription in mammary carcinoma cells. Oncogene. 2006;25:2773–84.

    Article  CAS  PubMed  Google Scholar 

  40. Wright TG, Singh VK, Li JJ, Foley JH, Miller F, Jia Z, et al. Increased production and secretion of HGF alpha-chain and an antagonistic HGF fragment in a human breast cancer progression model. Int J Cancer. 2009;125:1004–15.

    Article  CAS  PubMed  Google Scholar 

  41. Michieli P, Mazzone M, Basilico C, Cavassa S, Sottile A, Naldini L, et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell. 2004;6:61–73.

    Article  CAS  PubMed  Google Scholar 

  42. Mukohara T, Civiello G, Davis IJ, Taffaro ML, Christensen J, Fisher DE, et al. Inhibition of the met receptor in mesothelioma. Clin Cancer Res. 2005;11:8122–30.

    Article  CAS  PubMed  Google Scholar 

  43. Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T, et al. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci U S A. 1997;94:11445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Giordano S, Maffe A, Williams TA, Artigiani S, Gual P, Bardelli A, et al. Different point mutations in the met oncogene elicit distinct biological properties. FASEB J. 2000;14:399–406.

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt L, Junker K, Nakaigawa N, Kinjerski T, Weirich G, Miller M, et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999;18:2343–50.

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16:68–73.

    Article  CAS  PubMed  Google Scholar 

  47. Olivero M, Valente G, Bardelli A, Longati P, Ferrero N, Cracco C, et al. Novel mutation in the ATP-binding site of the MET oncogene tyrosine kinase in a HPRCC family. Int J Cancer. 1999;82:640–3.

    Article  CAS  PubMed  Google Scholar 

  48. Park WS, Dong SM, Kim SY, Na EY, Shin MS, Pi JH, et al. Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res. 1999;59:307–10.

    CAS  PubMed  Google Scholar 

  49. Di Renzo MF, Olivero M, Martone T, Maffe A, Maggiora P, Stefani AD, et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene. 2000;19:1547–55.

    Article  PubMed  CAS  Google Scholar 

  50. Ghadjar P, Blank-Liss W, Simcock M, Hegyi I, Beer KT, Moch H, et al. MET Y1253D-activating point mutation and development of distant metastasis in advanced head and neck cancers. Clin Exp Metastasis. 2009;26:809–15.

    Article  CAS  PubMed  Google Scholar 

  51. Jeffers M, Fiscella M, Webb CP, Anver M, Koochekpour S, Vande Woude GF. The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci U S A. 1998;95:14417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Giordano S, Bardelli A, Zhen Z, Menard S, Ponzetto C, Comoglio PM. A point mutation in the MET oncogene abrogates metastasis without affecting transformation. Proc Natl Acad Sci U S A. 1997;94:13868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nam HJ, Chae S, Jang SH, Cho H, Lee JH. The PI3K-Akt mediates oncogenic Met-induced centrosome amplification and chromosome instability. Carcinogenesis. 2010;31:1531–40.

    Article  CAS  PubMed  Google Scholar 

  54. Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M, et al. A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene. 2000;19:4947–53.

    Article  CAS  PubMed  Google Scholar 

  55. Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N, et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res. 2006;66:283–9.

    Article  CAS  PubMed  Google Scholar 

  56. Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5:850–9.

    Article  CAS  PubMed  Google Scholar 

  57. Merlin S, Pietronave S, Locarno D, Valente G, Follenzi A, Prat M. Deletion of the ectodomain unleashes the transforming, invasive, and tumorigenic potential of the MET oncogene. Cancer Sci. 2009;100:633–8.

    Article  CAS  PubMed  Google Scholar 

  58. Bergstrom JD, Hermansson A, Diaz de Stahl T, Heldin NE. Non-autocrine, constitutive activation of Met in human anaplastic thyroid carcinoma cells in culture. Br J Cancer. 1999;80:650–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qian CN, Guo X, Cao B, Kort EJ, Lee CC, Chen J, et al. Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma. Cancer Res. 2002;62:589–96.

    CAS  PubMed  Google Scholar 

  60. Wu YM, Liu CH, Huang MJ, Lai HS, Lee PH, Hu RH, et al. C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization. Cancer Res. 2013;73:5580–90.

    Article  CAS  PubMed  Google Scholar 

  61. Wang R, Ferrell LD, Faouzi S, Maher JJ, Bishop JM. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol. 2001;153:1023–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Verras M, Lee J, Xue H, Li TH, Wang Y, Sun Z. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res. 2007;67:967–75.

    Article  CAS  PubMed  Google Scholar 

  63. Shinomiya N, Vande Woude GF. Suppression of met expression: a possible cancer treatment. Commentary re: S. J. Kim et al., reduced c-Met expression by an adenovirus expressing a c-Met ribozyme inhibits tumorigenic growth and lymph node metastases of PC3-LN4 prostate tumor cells in an orthotopic nude mouse model. Clin Cancer Res. 14:5161-5170, 2003. Clin Cancer Res. 2003;9:5085–90.

    CAS  PubMed  Google Scholar 

  64. Rusciano D, Lorenzoni P, Burger M. Murine models of liver metastasis. Invasion Metastasis. 1994;14:349–61.

    PubMed  Google Scholar 

  65. Rusciano D, Lorenzoni P, Burger MM. Expression of constitutively activated hepatocyte growth factor/scatter factor receptor (c-met) in B16 melanoma cells selected for enhanced liver colonization. Oncogene. 1995;11:1979–87.

    CAS  PubMed  Google Scholar 

  66. Imai J, Watanabe M, Sasaki M, Yamaguchi R, Tateyama S, Sugano S. Induction of c-met proto-oncogene expression at the metastatic site. Clin Exp Metastasis. 1999;17:457–62.

    Article  CAS  PubMed  Google Scholar 

  67. Elia G, Ren Y, Lorenzoni P, Zarnegar R, Burger MM, Rusciano D. Mechanisms regulating c-met overexpression in liver-metastatic B16-LS9 melanoma cells. J Cell Biochem. 2001;81:477–87.

    Article  CAS  PubMed  Google Scholar 

  68. Shinomiya N, Sakamoto N, Matsuo H, Morimoto Y, Yoshimori A, Takahasi S, et al. In silico molecular design of small molecule inhibitors for Met receptor tyrosine kinase. In: 67th Annual Meeting of the Japanese Cancer Association, Nagoya, Japan; 2008.

    Google Scholar 

  69. Cooper CS, Tempest PR, Beckman MP, Heldin CH, Brookes P. Amplification and overexpression of the met gene in spontaneously transformed NIH3T3 mouse fibroblasts. EMBO J. 1986;5:2623–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hudziak RM, Lewis GD, Holmes WE, Ullrich A, Shepard HM. Selection for transformation and met protooncogene amplification in NIH 3T3 fibroblasts using tumor necrosis factor alpha. Cell Growth Differ. 1990;1:129–34.

    CAS  PubMed  Google Scholar 

  71. Kuniyasu H, Yasui W, Kitadai Y, Yokozaki H, Ito H, Tahara E. Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem Biophys Res Commun. 1992;189:227–32.

    Article  CAS  PubMed  Google Scholar 

  72. Peng Z, Zhu Y, Wang Q, Gao J, Li Y, Li Y, et al. Prognostic significance of MET amplification and expression in gastric cancer: a systematic review with meta-analysis. PLoS One. 2014;9:e84502.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Yamamoto S, Tsuda H, Miyai K, Takano M, Tamai S, Matsubara O. Accumulative copy number increase of MET drives tumor development and histological progression in a subset of ovarian clear-cell adenocarcinomas. Mod Pathol. 2012;25:122–30.

    Article  CAS  PubMed  Google Scholar 

  74. Yamashita Y, Akatsuka S, Shinjo K, Yatabe Y, Kobayashi H, Seko H, et al. Met is the most frequently amplified gene in endometriosis-associated ovarian clear cell adenocarcinoma and correlates with worsened prognosis. PLoS One. 2013;8:e57724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. De Bacco F, Casanova E, Medico E, Pellegatta S, Orzan F, Albano R, et al. The MET oncogene is a functional marker of a glioblastoma stem cell subtype. Cancer Res. 2012;72:4537–50.

    Article  PubMed  CAS  Google Scholar 

  76. Wang K, Lim HY, Shi S, Lee J, Deng S, Xie T, et al. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology. 2013;58:706–17.

    Article  PubMed  CAS  Google Scholar 

  77. Saada E, Peoc’h M, Decouvelaere AV, Collard O, Peyron AC, Pedeutour F. CCND1 and MET genomic amplification during malignant transformation of a giant cell tumor of bone. J Clin Oncol. 2011;29:e86–9.

    Article  PubMed  Google Scholar 

  78. Miller CT, Lin L, Casper AM, Lim J, Thomas DG, Orringer MB, et al. Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma. Oncogene. 2006;25:409–18.

    Article  CAS  PubMed  Google Scholar 

  79. Lee HE, Kim MA, Lee HS, Jung EJ, Yang HK, Lee BL, et al. MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer. 2012;107:325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yin X, Zhang T, Su X, Ji Y, Ye P, Fu H, et al. Relationships between chromosome 7 gain, MET gene copy number increase and MET protein overexpression in chinese papillary renal cell carcinoma patients. PLoS One. 2015;10:e0143468.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Fushida S, Yonemura Y, Urano T, Yamaguchi A, Miyazaki I, Nakamura T, et al. Expression of hepatocyte growth factor(hgf) and C-met gene in human gastric-cancer cell-lines. Int J Oncol. 1993;3:1067–70.

    CAS  PubMed  Google Scholar 

  82. Shinomiya N, Gao CF, Xie Q, Gustafson M, Waters DJ, Zhang YW, et al. RNA interference reveals that ligand-independent met activity is required for tumor cell signaling and survival. Cancer Res. 2004;64:7962–70.

    Article  CAS  PubMed  Google Scholar 

  83. Fujisaki T, Tanaka Y, Fujii K, Mine S, Saito K, Yamada S, et al. CD44 stimulation induces integrin-mediated adhesion of colon cancer cell lines to endothelial cells by up-regulation of integrins and c-Met and activation of integrins. Cancer Res. 1999;59:4427–34.

    CAS  PubMed  Google Scholar 

  84. Carpenter BL, Chen M, Knifley T, Davis KA, Harrison SM, Stewart RL, et al. Integrin alpha6beta4 promotes autocrine epidermal growth factor receptor (EGFR) signaling to stimulate migration and invasion toward hepatocyte growth factor (HGF). J Biol Chem. 2015;290:27228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rahman S, Patel Y, Murray J, Patel KV, Sumathipala R, Sobel M, et al. Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol. 2005;6:8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Hui AY, Meens JA, Schick C, Organ SL, Qiao H, Tremblay EA, et al. Src and FAK mediate cell-matrix adhesion-dependent activation of Met during transformation of breast epithelial cells. J Cell Biochem. 2009;107:1168–81.

    Article  CAS  PubMed  Google Scholar 

  87. Nakamura Y, Matsubara D, Goto A, Ota S, Sachiko O, Ishikawa S, et al. Constitutive activation of c-Met is correlated with c-Met overexpression and dependent on cell-matrix adhesion in lung adenocarcinoma cell lines. Cancer Sci. 2008;99:14–22.

    Article  CAS  PubMed  Google Scholar 

  88. Mitra AK, Sawada K, Tiwari P, Mui K, Gwin K, Lengyel E. Ligand-independent activation of c-Met by fibronectin and alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene. 2011;30:1566–76.

    Article  CAS  PubMed  Google Scholar 

  89. Wang R, Kobayashi R, Bishop JM. Cellular adherence elicits ligand-independent activation of the Met cell-surface receptor. Proc Natl Acad Sci U S A. 1996;93:8425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. Targeting MET as a strategy to overcome crosstalk-related resistance to EGFR inhibitors. Lancet Oncol. 2009;10:709–17.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang YW, Staal B, Essenburg C, Lewis S, Kaufman D, Vande Woude GF. Strengthening context-dependent anticancer effects on non-small cell lung carcinoma by inhibition of both MET and EGFR. Mol Cancer Ther. 2013;12:1429–41.

    Article  CAS  PubMed  Google Scholar 

  92. Johnson J, Ascierto ML, Mittal S, Newsome D, Kang L, Briggs M, et al. Genomic profiling of a hepatocyte growth factor-dependent signature for MET-targeted therapy in glioblastoma. J Transl Med. 2015;13:306.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Ghosh G, Lian X, Kron SJ, Palecek SP. Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors. BMC Cancer. 2012;12:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Imamura R, Matsumoto K. Hepatocyte growth factor in physiology and infectious diseases. Cytokine. 2017;98:97–106.

    Article  CAS  PubMed  Google Scholar 

  95. Cacciotti P, Libener R, Betta P, Martini F, Porta C, Procopio A, et al. SV40 replication in human mesothelial cells induces HGF/Met receptor activation: a model for viral-related carcinogenesis of human malignant mesothelioma. Proc Natl Acad Sci U S A. 2001;98:12032–37.

    Google Scholar 

  96. Luo B, Wang Y, Wang XF, Gao Y, Huang BH, Zhao P. Correlation of Epstein-Barr virus and its encoded proteins with Helicobacter pylori and expression of c-met and c-myc in gastric carcinoma. World J Gastroenterol. 2006;12:1842–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 2014;516:400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Song X, Xin N, Wang W, Zhao C. Wnt/beta-catenin, an oncogenic pathway targeted by H. pylori in gastric carcinogenesis. Oncotarget. 2015;6:35579–88.

    PubMed  PubMed Central  Google Scholar 

  99. Nakamura M, Takahashi T, Matsui H, Baniwa Y, Takahashi S, Murayama SY, et al. Alteration of angiogenesis in Helicobacter heilmannii-induced mucosa-associated lymphoid tissue lymphoma: interaction with c-Met and hepatocyte growth factor. J Gastroenterol Hepatol. 2014;29(Suppl 4):70–6.

    Article  CAS  PubMed  Google Scholar 

  100. Ivanovska I, Zhang C, Liu AM, Wong KF, Lee NP, Lewis P, et al. Gene signatures derived from a c-MET-driven liver cancer mouse model predict survival of patients with hepatocellular carcinoma. PLoS One. 2011;6:e24582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xie Q, Su Y, Dykema K, Johnson J, Koeman J, De Giorgi V, et al. Overexpression of HGF promotes HBV-induced hepatocellular carcinoma progression and is an effective indicator for met-targeting therapy. Genes Cancer. 2013;4:247–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Sakamoto N, Tsujimoto H, Takahata R, Cao B, Zhao P, Ito N, et al. MET4 expression predicts poor prognosis of gastric cancers with Helicobacter pylori infection. Cancer Sci. 2017;108:322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chochi K, Ichikura T, Kinoshita M, Majima T, Shinomiya N, Tsujimoto H, et al. Helicobacter pylori augments growth of gastric cancers via the lipopolysaccharide-toll-like receptor 4 pathway whereas its lipopolysaccharide attenuates antitumor activities of human mononuclear cells. Clin Cancer Res. 2008;14:2909–17.

    Article  CAS  PubMed  Google Scholar 

  104. Churin Y, Al-Ghoul L, Kepp O, Meyer TF, Birchmeier W, Naumann M. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol. 2003;161:249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Franke R, Muller M, Wundrack N, Gilles ED, Klamt S, Kahne T, et al. Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction. BMC Syst Biol. 2008;2:4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  106. Oliveira MJ, Costa AC, Costa AM, Henriques L, Suriano G, Atherton JC, et al. Helicobacter pylori induces gastric epithelial cell invasion in a c-Met and type IV secretion system-dependent manner. J Biol Chem. 2006;281:34888–96.

    Article  CAS  PubMed  Google Scholar 

  107. Suzuki M, Mimuro H, Kiga K, Fukumatsu M, Ishijima N, Morikawa H, et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe. 2009;5:23–34.

    Article  CAS  PubMed  Google Scholar 

  108. Suzuki M, Mimuro H, Suzuki T, Park M, Yamamoto T, Sasakawa C. Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J Exp Med. 2005;202:1235–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bupathi M, Kaseb A, Meric-Bernstam F, Naing A. Hepatocellular carcinoma: where there is unmet need. Mol Oncol. 2015;9:1501–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Barreiros AP, Sprinzl M, Rosset S, Hohler T, Otto G, Theobald M, et al. EGF and HGF levels are increased during active HBV infection and enhance survival signaling through extracellular matrix interactions in primary human hepatocytes. Int J Cancer. 2009;124:120–9.

    Article  CAS  PubMed  Google Scholar 

  111. Ozden M, Kalkan A, Demirdag K, Denk A, Kilic SS. Hepatocyte growth factor (HGF) in patients with hepatitis B and meningitis. J Infect. 2004;49:229–35.

    Article  CAS  PubMed  Google Scholar 

  112. Rogler CE, Chisari FV. Cellular and molecular mechanisms of hepatocarcinogenesis. Semin Liver Dis. 1992;12:265–78.

    Article  CAS  PubMed  Google Scholar 

  113. Annen K, Nojima T, Hata Y, Uchino J, Tanaka S, Matsuda M, et al. Analysis of the hepatocyte growth factor receptor in regeneration and oncogenesis of the liver. Gen Diagn Pathol. 1996;141:179–86.

    CAS  PubMed  Google Scholar 

  114. Tward AD, Jones KD, Yant S, Kay MA, Wang R, Bishop JM. Genomic progression in mouse models for liver tumors. Cold Spring Harb Symp Quant Biol. 2005;70:217–24.

    Article  CAS  PubMed  Google Scholar 

  115. Joffre C, Barrow R, Menard L, Calleja V, Hart IR, Kermorgant S. A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol. 2011;13:827–37.

    Article  CAS  PubMed  Google Scholar 

  116. Graveel C, Su Y, Koeman J, Wang LM, Tessarollo L, Fiscella M, et al. Activating Met mutations produce unique tumor profiles in mice with selective duplication of the mutant allele. Proc Natl Acad Sci U S A. 2004;101:17198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Graveel CR, London CA, Vande Woude GF. A mouse model of activating Met mutations. Cell Cycle. 2005;4:518–20.

    Article  CAS  PubMed  Google Scholar 

  118. Fischer J, Palmedo G, von Knobloch R, Bugert P, Prayer-Galetti T, Pagano F, et al. Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours. Oncogene. 1998;17:733–9.

    Article  CAS  PubMed  Google Scholar 

  119. Zhuang Z, Park WS, Pack S, Schmidt L, Vortmeyer AO, Pak E, et al. Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet. 1998;20:66–9.

    Article  CAS  PubMed  Google Scholar 

  120. Graveel CR, DeGroot JD, Sigler RE, Vande Woude GF. Germline met mutations in mice reveal mutation- and background-associated differences in tumor profiles. PLoS One. 2010;5:e13586.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  121. Graveel CR, DeGroot JD, Su Y, Koeman J, Dykema K, Leung S, et al. Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer. Proc Natl Acad Sci U S A. 2009;106:12909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Otsuka T, Takayama H, Sharp R, Celli G, LaRochelle WJ, Bottaro DP, et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res. 1998;58:5157–67.

    CAS  PubMed  Google Scholar 

  123. Noonan FP, Otsuka T, Bang S, Anver MR, Merlino G. Accelerated ultraviolet radiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice. Cancer Res. 2000;60:3738–43.

    CAS  PubMed  Google Scholar 

  124. Gallego MI, Bierie B, Hennighausen L. Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways. Oncogene. 2003;22:8498–508.

    Article  CAS  PubMed  Google Scholar 

  125. Sakata H, Takayama H, Sharp R, Rubin JS, Merlino G, LaRochelle WJ. Hepatocyte growth factor/scatter factor overexpression induces growth, abnormal development, and tumor formation in transgenic mouse livers. Cell Growth Differ. 1996;7:1513–23.

    CAS  PubMed  Google Scholar 

  126. Cao R, Bjorndahl MA, Gallego MI, Chen S, Religa P, Hansen AJ, et al. Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood. 2006;107:3531–6.

    Article  CAS  PubMed  Google Scholar 

  127. Stabile LP, Lyker JS, Land SR, Dacic S, Zamboni BA, Siegfried JM. Transgenic mice overexpressing hepatocyte growth factor in the airways show increased susceptibility to lung cancer. Carcinogenesis. 2006;27:1547–55.

    Article  CAS  PubMed  Google Scholar 

  128. Yu Y, Merlino G. Constitutive c-Met signaling through a nonautocrine mechanism promotes metastasis in a transgenic transplantation model. Cancer Res. 2002;62:2951–6.

    CAS  PubMed  Google Scholar 

  129. Zhang YW, Su Y, Lanning N, Gustafson M, Shinomiya N, Zhao P, et al. Enhanced growth of human met-expressing xenografts in a new strain of immunocompromised mice transgenic for human hepatocyte growth factor/scatter factor. Oncogene. 2005;24:101–6.

    Article  PubMed  CAS  Google Scholar 

  130. Borowiak M, Garratt AN, Wustefeld T, Strehle M, Trautwein C, Birchmeier C. Met provides essential signals for liver regeneration. Proc Natl Acad Sci U S A. 2004;101:10608–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA, Thorgeirsson SS. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A. 2004;101:4477–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gomez-Quiroz LE, Factor VM, Kaposi-Novak P, Coulouarn C, Conner EA, Thorgeirsson SS. Hepatocyte-specific c-Met deletion disrupts redox homeostasis and sensitizes to Fas-mediated apoptosis. J Biol Chem. 2008;283:14581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Arechederra M, Carmona R, Gonzalez-Nunez M, Gutierrez-Uzquiza A, Bragado P, Cruz-Gonzalez I, et al. Met signaling in cardiomyocytes is required for normal cardiac function in adult mice. Biochim Biophys Acta. 2013;1832:2204–15.

    Article  CAS  PubMed  Google Scholar 

  134. Alvarez-Perez JC, Ernst S, Demirci C, Casinelli GP, Mellado-Gil JM, Rausell-Palamos F, et al. Hepatocyte growth factor/c-Met signaling is required for beta-cell regeneration. Diabetes. 2014;63:216–23.

    Article  CAS  PubMed  Google Scholar 

  135. Marx-Stoelting P, Borowiak M, Knorpp T, Birchmeier C, Buchmann A, Schwarz M. Hepatocarcinogenesis in mice with a conditional knockout of the hepatocyte growth factor receptor c-Met. Int J Cancer. 2009;124:1767–72.

    Article  CAS  PubMed  Google Scholar 

  136. Chisari FV, Klopchin K, Moriyama T, Pasquinelli C, Dunsford HA, Sell S, et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell. 1989;59:1145–56.

    Article  CAS  PubMed  Google Scholar 

  137. Cui JJ. Targeting receptor tyrosine kinase MET in cancer: small molecule inhibitors and clinical progress. J Med Chem. 2014;57:4427–53.

    Article  CAS  PubMed  Google Scholar 

  138. Gozdzik-Spychalska J, Szyszka-Barth K, Spychalski L, Ramlau K, Wojtowicz J, Batura-Gabryel H, et al. C-MET inhibitors in the treatment of lung cancer. Curr Treat Options in Oncol. 2014;15:670–82.

    Article  Google Scholar 

  139. Olwill SA, Joffroy C, Gille H, Vigna E, Matschiner G, Allersdorfer A, et al. A highly potent and specific MET therapeutic protein antagonist with both ligand-dependent and ligand-independent activity. Mol Cancer Ther. 2013;12:2459–71.

    Article  CAS  PubMed  Google Scholar 

  140. Vigna E, Chiriaco C, Cignetto S, Fontani L, Basilico C, Petronzelli F, et al. Inhibition of ligand-independent constitutive activation of the Met oncogenic receptor by the engineered chemically-modified antibody DN30. Mol Oncol. 2015;9:1760–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Diamond JR, Salgia R, Varella-Garcia M, Kanteti R, LoRusso PM, Clark JW, et al. Initial clinical sensitivity and acquired resistance to MET inhibition in MET-mutated papillary renal cell carcinoma. J Clin Oncol. 2013;31:e254–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Medova M, Pochon B, Streit B, Blank-Liss W, Francica P, Stroka D, et al. The novel ATP-competitive inhibitor of the MET hepatocyte growth factor receptor EMD1214063 displays inhibitory activity against selected MET-mutated variants. Mol Cancer Ther. 2013;12:2415–24.

    Article  CAS  PubMed  Google Scholar 

  143. Tiedt R, Degenkolbe E, Furet P, Appleton BA, Wagner S, Schoepfer J, et al. A drug resistance screen using a selective MET inhibitor reveals a spectrum of mutations that partially overlap with activating mutations found in cancer patients. Cancer Res. 2011;71:5255–64.

    Article  CAS  PubMed  Google Scholar 

  144. Landi L, Minuti G, D’Incecco A, Cappuzzo F. Targeting c-MET in the battle against advanced nonsmall-cell lung cancer. Curr Opin Oncol. 2013;25:130–6.

    Article  CAS  PubMed  Google Scholar 

  145. Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC. Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J Biol Chem. 2000;275:8806–11.

    Article  CAS  PubMed  Google Scholar 

  146. Kishiki T, Ohnishi H, Masaki T, Ohtsuka K, Ohkura Y, Furuse J, et al. Overexpression of MET is a new predictive marker for anti-EGFR therapy in metastatic colorectal cancer with wild-type KRAS. Cancer Chemother Pharmacol. 2014;73:749–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Koeppen H, Rost S, Yauch RL. Developing biomarkers to predict benefit from HGF/MET pathway inhibitors. J Pathol. 2014;232:210–8.

    Article  CAS  PubMed  Google Scholar 

  148. An N, Xiong Y, LaRue AC, Kraft AS, Cen B. Activation of Pim kinases is sufficient to promote resistance to MET small-molecule inhibitors. Cancer Res. 2015;75:5318–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Infante JR, Rugg T, Gordon M, Rooney I, Rosen L, Zeh K, et al. Unexpected renal toxicity associated with SGX523, a small molecule inhibitor of MET. Investig New Drugs. 2013;31:363–9.

    Article  CAS  Google Scholar 

  150. Cepero V, Sierra JR, Corso S, Ghiso E, Casorzo L, Perera T, et al. MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors. Cancer Res. 2010;70:7580–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science (to N. S.; #15H04315), by the Stephen M. Coffman Charitable Trust and ETSU start-up funds (to Q. X.), and by the generosity of the Jay & Betty Van Andel Foundation (to G. V. W.). We are very grateful to David Nadziejka (Van Andel Research Institute) for technical editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nariyoshi Shinomiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shinomiya, N., Xie, Q., Vande Woude, G.F. (2018). Met Activation and Carcinogenesis. In: Shinomiya, N., Kataoka, H., Xie, Q. (eds) Regulation of Signal Transduction in Human Cell Research. Current Human Cell Research and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-7296-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7296-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7295-6

  • Online ISBN: 978-981-10-7296-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics