Skip to main content
Log in

Heart failure and the aging myocardium: Possible role of cardiac mitochondria

  • Basic Science Reviews
  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The incidence of congestive heart failure (CHF) increases with advancing age and many of these individuals have diastolic dysfunction with preserved systolic function. The role of cardiac mitochondrial function to diastolic dysfunction/heart failure has not been studied extensively. This review discusses the mitochondrial changes that occur with age and their possible contribution to myocardial aging and CHF (e.g., mitochondrial structure, mitochondrial function, possible mechanisms, and physiologic implications).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johns DR. Mitochondrial DNA and disease. N Engl J Med 1995;333:638–644.

    Google Scholar 

  2. Wallace DC. 1994 William Allan Award Address. Mitchondrial DNA variations in human evolution, degenerative disease, and aging. Am J Hum Genet 1995;57:201–223.

    Google Scholar 

  3. Johnston W, Karpati G, Carpenter S, Arnold D, Shoubridge EA. Late-onset mitochondrial myopathy. Ann Neurol 1995; 37:16–23.

    Google Scholar 

  4. Wei JY. Age and the cardiovascular system. N Engl J Med 1992;327:1735–1739.

    Google Scholar 

  5. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart: Myocyte loss and reactive cellular hypertrophy. Circ Res 1991;68:1560–1568.

    Google Scholar 

  6. Tate EL, Herbener GH. A morphometric study of the density of mitochondrial cristae in heart and liver of aging mice. J Gerontol 1976;31:129–134.

    Google Scholar 

  7. Herbener GH. A morphometric study of age-dependent changes in mitochondrial population of mouse liver and heart. J Gerontol 1976;31:8–12.

    Google Scholar 

  8. Sabbah HN, Sharov V, Riddle JM, Kono T, Lesch M, Goldstein S. Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 1992; 24:1333–1347.

    Google Scholar 

  9. Tomanek RJ, Karlson UL, Myocardial ultrastructure of young and senescent rats. J Ultrastructure Res 1973;42: 201–220.

    Google Scholar 

  10. Palmer JW, Tandler B, Hoppel C. Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: Effects of procedural manipulations. Arch Biochem Biophys 1985;236:691–702.

    Google Scholar 

  11. Duan JM, Karmazyn M. Acute effects of hypoxia and phosphate on two populations of heart mitochondria. Mol Cell Biochem 1989;90:47–56.

    Google Scholar 

  12. Palmer JW, Schmid PC, Pfeiffer DR, Schmid HHO. Lipids and lipolytic enzyme activities of rat heart mitochondria. Arch Biochem Biophys 1981;211:674–682.

    Google Scholar 

  13. Weistein ES, Benson DW, Ratcliffe DJ, Maksem J, Fry DE. Experimental myocardial ischemia: Differential injury of mitochondrial suppopulations. Arch Surg 1985;120: 332–338.

    Google Scholar 

  14. Chen JC, Warshaw JB, Sanadi DR. Regulation of mitochondrial respiration in senescence. J Cell Physiol 1972;80: 141–148.

    Google Scholar 

  15. Hansford RG. Lipid oxidation by heart mitochondria from young adult and senescent rats. Biochem J 1978;170: 285–295.

    Google Scholar 

  16. Paradies G, Ruggiero FM. Age-related changes in the activity of the pyruvate carrier and in the lipid composition in rat-heart mitochondria. Biochim Biophys Acta 1990;1016: 207–212.

    Google Scholar 

  17. Paradies G, Ruggiero FM, Dinoi P. Decreased activity of the phosphate carrier and modification of lipids in cardiac mitochondria from senescent rats. Int J Biochem 1992;24: 783–787.

    Google Scholar 

  18. Paradies G, Ruggiero FM, Quagliarello E. Age-dependent changes in the activity of anion carriers and in the lipid composition in rat heart mitochondria. Ann NY Acad Sci 1992;673:160–164.

    Google Scholar 

  19. Hansford RG, Castro F. Effect of senescence on Ca2+-ion transport by heart mitochondria. Mech Ageing Dev 1982; 19:5–13.

    Google Scholar 

  20. McMillin JB, Taffet GE, Taegtmeyer H, Hudson EK, Tate CA. Mitochondrial metabolism and substrate competition in the aging Fischer rat heart. Cardiovasc Res 1993;27: 2222–2228.

    Google Scholar 

  21. Odiet JA, Boerrigter METI, Wei JY. Carnitine palmitoyl transferase-I activity in the aging mouse heart. Mech Ageing Dev 1995;79:127–136.

    Google Scholar 

  22. Hansford RG, Castro F. Age-linked changes in the activity of enzymes of the tricarboxylate cycle and lipid oxidation, and of carnitine content, in muscle of the rat. Mech Ageing Dev 1982;19:191–201.

    Google Scholar 

  23. Takasawa M, Hayakawa M, Sugiyama S, Hattori K, Ito T, Ozawa T. Age-associated damage in mitochondrial function in rat hearts. Exp Gerontol 1993;28:269–280.

    Google Scholar 

  24. Abu-Erreish GM, Sanadi DR. Age-related changes in cytochrome concentration of myocardial mitochondria. Mech Ageing Dev 1978;7:425–432.

    Google Scholar 

  25. Manzelmann MS, Harmon HJ. Lack of age-dependent changes in rat heart mitochondria. Mech Ageing Dev 1987; 39:281–288.

    Google Scholar 

  26. Nohl H, Kramer R. Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mech Ageing Dev 1980;14:137–144.

    Google Scholar 

  27. Chesky JA, Rockstein M, Lopez T. Changes with age of myocardial creatine phosphokinase in the male Fischer rat. Mech Ageing Dev 1980;12:237–243.

    Google Scholar 

  28. Schuyler GT, Yarbrough LR. Effects of age on myosin and creatine kinase isoforms in left ventricles of Fischer 344 rats. Mech Ageing Dev 1990;56:23–38.

    Google Scholar 

  29. Abu-Erreish GM, Neely JR, Whitmer JT, Whitman V, Sanadi DR. Fatty acid oxidation by isolated perfused working hearts of aged rats. Am J Physiol 1977;1:E258-E262.

    Google Scholar 

  30. Costell M, O'Connor JE, Grisolia S. Age-dependent decrease of carnitine content in muscle of mice and humans. Biochem Biophys Res Commun 1989;161:1135–1143.

    Google Scholar 

  31. Harman D. The aging process: Major risk factor for disease and death. Proc Natl Acad Sci USA 1991;88:5360–5363.

    Google Scholar 

  32. Hegner D. Age-dependence of molecular and functional changes in biological membrane properties. Mech Ageing Dev 1980;14:101–118.

    Google Scholar 

  33. Nohl H, Breuninger V, Hegner D. Influence of mitochondrial radical formation on energy-linked respiration. Eur J Biochem 1978;90:385–390.

    Google Scholar 

  34. Sohal RS, Agarwal A, Argarwal S, Orr WC. Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem 1995;270:15671–15674.

    Google Scholar 

  35. Orr WC, Sohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1991;263:1128–1130.

    Google Scholar 

  36. Ji LL, Dillon D, Wu E. Myocardial aging: Myocardial aging: Antioxidant enzyme systems and related biochemical properties. Am J Physiol 1991;261:R386-R392.

    Google Scholar 

  37. Lewin MB, Timiras PS. Lipid changes witih aging in cardiac mitochondrial membranes. Mech Ageing Dev 1984;24: 343–351.

    Google Scholar 

  38. Hoch FL. Cardiolipins and biomembrane function. Biochem Biophys Acta 1992;1113:71–133.

    Google Scholar 

  39. Cortopassi GA, Arnheim N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 1990;18:6927–6933.

    Google Scholar 

  40. Cortopassi GA, Shibata D, Soong N-W, Arnheim N. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissue. Proc Natl Acad Sci USA 1992; 89:7370–7374.

    Google Scholar 

  41. Hattori K, Tanaka M, Sugiyama S, et al. Age-dependent increase in deleted mitochondrial DNA in the human heart: Possible contributory factor to presbycardia. Am Heart J 1991;121:1735–1742.

    Google Scholar 

  42. Piko L, Hougham AJ, Bulpitt KJ. Studies of sequence heterogeneity of mitochondrial DNA from rat and mouse tissues: Evidence for an increased frequency of deletions/additions with aging. Mech Ageing Dev 1988;43:279–293.

    Google Scholar 

  43. Bandy B, Davison A. Mitochondrial mutations may increase oxidative stress: Implications for carcinogenesis and aging? Free Radic Biol Med 1990;8:523–539.

    Google Scholar 

  44. Gadaleta MN, Petruzzella V, Renis M, Fracasso F, Cantatore P. Reduced transcription of mitochondrial DNA in the senescent rat: tissue dependence and effects of L-carnitine. Eur J Biochem 1990;187:501–506.

    Google Scholar 

  45. Gaines G, Rossi C, Attardi G. Markedly different ATP requirements for rRNA synthesis and mtDNA light strand transcription versus mRNA synthesis in isolated human mitochondria. J Biol Chem 1987;262:1907–1915.

    Google Scholar 

  46. Müller-Höcker J. Cytochrome-c-oxidase deficient cardiomyocytes in the human heart: A histochemical ultracytochemica study. Am J Pathol 1989;134:1167–1173.

    Google Scholar 

  47. Cortopassi G, Wang E. Modelling the effects of age-related mtDNA mutation accumulation; complex I deficiency, superoxide and cell death. Biochim Biophys Acta 1995;1271: 171–176.

    Google Scholar 

  48. Starnes JW, Rumsey WL. Cardiac energetics and performance of exercised and food-restricted rats during aging. Am J Physiol 1988;254:H599-H608.

    Google Scholar 

  49. Starnes JW, Beyer RE, Edington DW. Myocardial adaptations to endurance exercise in aged rats. Am J Physiol 1983;245:H560-H566.

    Google Scholar 

  50. Wei JY, Gersh BJ. Heart disease in the elderly. Curr Prob Cardiol 1987;12:1–65.

    Google Scholar 

  51. Lakatta EG, Yin FC. Myocardial aging: Functional alterations and related cellular mechanisms. Am J Physiol 1982; 242:H927-H941.

    Google Scholar 

  52. Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol Rev 1993;73:413–467.

    Google Scholar 

  53. Wei JY, Spurgeon HA, Lakatta EG. Excitation-contraction in rat myocardium: Alterations with adult aging. Am J Physiol 1984;246:H784-H791.

    Google Scholar 

  54. Maciel LMZ, Polikar R, Rohrer D, Popovich BK, Dillmann WH. Age-induced decreases in the messenger RNA coding for the sarcoplasmic reticulum Ca2+-ATPase of the rat heart. Circ Res 1990;67:230–234.

    Google Scholar 

  55. Buttrick P, Malhotra A, Factor S, Geenen D, Leinwand L, Scheuer J. Effect of aging and hypertension on myosin biochemistry and gene expression in the rat heart. Circ Res 1991;68:645–652.

    Google Scholar 

  56. Isoyama S, Wei JY, Izumo S, Fort P, Schoen F, Grossman W. Effect of age on the development of cardiac hypertrophy produced by aortic constriction in the rat. Circ Res 1987; 61:337–345.

    Google Scholar 

  57. Takashashi T, Schunkert H, Isoyama S, Wei JY, Nadal-Ginard B, Grossman W, Izumo S. Age-related differences in the expression of proto-oncogene and contractile protein genes in response to pressure overload in the rat myocardium. J Clin Invest 1992;89:939–946.

    Google Scholar 

  58. Isoyama S, Grossman W, Wei JY. Effect of age on myocardial adaptation to volume overload in the rat. J Clin Invest 1988;81:1850–1857.

    Google Scholar 

  59. Hachamovitch R, Wicker P, Capasso JM, Anversa P. Alterations of coronary blood flow and reserve with aging in Fischer 344 rats. Am J Physiol 1989;256:H66-H73.

    Google Scholar 

  60. Stewart LC, Kelly RA, Atkinson DE, Ingwall JS. pH heterogeneity in aged hypertensive rat hearts distinguishes reperfused from persistently ischemic myocardium. J Mol Cell Cardiol 1995;27:321–333.

    Google Scholar 

  61. Lesnefsky EJ, Gallo DS, Ye J, Whittingham TS, Lust WD. Aging increases ischemia-reperfusion injury in the isolated, buffer-perfused heart. J Lab Clin Med 1994;124:843–851.

    Google Scholar 

  62. Ataka K, Chen D, Levitsky S, Jimenez E, Feinberg H. Effect of aging on intracellular Ca2+, pHi, and contractility during ischemia and reperfusion. Circulation 1992;86: II371-II376.

    Google Scholar 

  63. Faulk EA, McCully JD, Tsukube T, Hadlow NC, Krukenkamp IB, Levitsky S. Myocardial mitochondrial calcium accumulation modulates nuclear calcium accumulation and DNA fragmentation. Ann Thorac Surg 1995;60:338–344.

    Google Scholar 

  64. Weindruch R. Dietary restriction, tumors, and aging. J Gerontol 1989;44:67–71.

    Google Scholar 

  65. Heydari AR, Richardson A. Does gene expression play any role in the mechanism of the antiaging effect of dietary restriction? Ann NY Acad Sci 1992;663:384–395.

    Google Scholar 

  66. Rao G, Xia E, Nadakavukaren MJ, Richardson A. Effect of dietary restriction on the age-dependent changes in the expression of antioxidant enzymes in rat liver. J Nutr 1990; 120:602–609.

    Google Scholar 

  67. Koizumi A, Weindruch R, Walford R. Influences of dietary restriction and age on liver enzyme activities and lipid peroxidation in mice. J Nutr 1987;117:361–367.

    Google Scholar 

  68. Laganiere S, Yu BP. Anti-lipoperoxidation action of food restriction. Biochem Biophys Res Comm 1987;145: 1185–1191.

    Google Scholar 

  69. Xia E, Rao G, Van, Remmen H, Heydari AR, Richardson A. Activities of antioxidant enzymes in various tissues of male Fischer 344 rats are altered by food restriction. J Nutr 1995;125:195–201.

    Google Scholar 

  70. Ji LL, Dillon D, Wu E. Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am J Physiol 1990;258:R918-R923.

    Google Scholar 

  71. Luhtala TA, Roecker EB, Pugh T, Feuers RJ, Weindruch R. Dietary restriction attenuates age-related increases in rat skeletal muscle antioxidant enzyme activities. J Gerontol 1994;49:B231-B238.

    Google Scholar 

  72. Weindruch R, Cheung MK, Verity M, Walford R. Modification of mitochondrial respiration by aging and dietary restriction. Mech Ageing Dev 1980;12:375–392.

    Google Scholar 

  73. Coleman R, Weiss A, Finkelbrand S, Silbermann M. Age and exercise-related changes in myocardial mitochondria in mice. Acta Histochem 1988;83:81–90.

    Google Scholar 

  74. Chesky JA, LaFollette S, Travis M, Fortado C. Effect of physical training on myocardial enzyme activities in aging rats. J Appl Physiol 1983;55:1349–1353.

    Google Scholar 

  75. Li YX, Lincoln T, Mendelowitz D, Grossman W, Wei JY. Age-related differences in effect of exercise training on cardiac muscle function in rats. Am J Physiol 1986;251: H12-H18.

    Google Scholar 

  76. Wei JY, Li YX, Lincoln T, Grossman W, Mendelowitz D. Chronic exercise training protects aged cardiac muscle against hypoxia. J Clin Invest 1989;83:778–784.

    Google Scholar 

  77. Gwathmey JK, Slawsky MT, Perreault CL, Briggs GM, Morgan JP, Wei JY. Effects of exercise conditioning on excitation-contraction coupling in aged rats. J Appl Physiol 1990;69:1366–1371.

    Google Scholar 

  78. Costell M, Grisolia S. Effect of carnitine feeding on the levels of heart and skeletal muscle carnitine of elderly mice. FEBS Lett 1993;315:43–46.

    Google Scholar 

  79. Paradies G, Ruggiero FM, Gadaleta MN, Quagliariello E. The effect of aging and acetyl-L-carnitine on the activity of phosphate carrier and on the phospholipid composition in rat mitochondria. Biochim Biophys Acta 1992;1103: 324–326.

    Google Scholar 

  80. Ferrari R, Ciampalini G, Agnoletti G, Cargnoni A, Ceconi C, Visioli O. Effect of L-carnitine derivatives on heart mitochondrial damage induced by lipid peroxidation. Pharmacol Res Commun 1988;20:125–132.

    Google Scholar 

  81. Arduini A, Garbunov N, Arrigoni-Martelli E, Dottori S, Molajoni F, Russo F, Federici G. Effects of L-carnitine and its acetate and propionate esters on the molecular dynamics of human erythrocyte membrane. Biochim Biophys Acta 1993;1146:229–235.

    Google Scholar 

  82. Schatz G. Mitochondria: Beyond oxidative phosphorylation. Biochim Biophys Acta 1995;1271:123–126.

    Google Scholar 

  83. Hannavy K, Rospert S, Schatz G. Protein import into mitochondria: A paradigm for the translocation of polypeptides across membranes. Curr Opin Cell Biol 1993;5: 694–700.

    Google Scholar 

  84. Bakker A, Goossens F, De, Bie M, Bernaert I, Van, Belle H, Jacob W. The effect of ischemia and reperfusion on mitochondrial contact sites in isolated rat hearts. Histol Histopathol 1995;10:405–416.

    Google Scholar 

  85. Grivell LA. Nucleo-mitochondrial interactions in mitochondrial gene expression. Crit Rev Biochem Mol Biol 1995;30: 121–164.

    Google Scholar 

  86. Slater A, Nobel S, Orrenius S. The role of intracellular oxidants in apoptosis. Biochim Biophys Acta 1995;1271: 59–62.

    Google Scholar 

  87. Seibel P, Trappe J, Villani G, Klopstock T, Papa S, Reichmann H. Transfection of mitochondria: Strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res 1995;23:10–17.

    Google Scholar 

  88. Luchi RJ, Snow E, Luchi JM, Nelson CL, Pircher FJ. Left ventricular function in hospitalized geriatric patients. J Am Geriatr Soc 1982;30:700–705.

    Google Scholar 

  89. Wei JY, Li YX, Lincoln T, Grossman W, Mendelowitz D. Chronic exercise training protects aged cardiac muscle against hypoxia. J Clin Invest 1989;83:778–784.

    Google Scholar 

  90. Christe ME, Rodgers RL. Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol 1994;26:1371–1375.

    Google Scholar 

  91. Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuck GD. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 1994;267:H742-H750.

    Google Scholar 

  92. Ingwall JS. Is cardiac failure a consequence of decreased energy reserve? Circulation 1993;87(Suppl VII):VII58-VII62.

    Google Scholar 

  93. Ingwall JS, Kramer MF, Fifer MA, Lorell BH, Shemin R, Grossman W, Allen PD. The creatine kinase system in normal and diseased human myocardium. N Engl J Med 1985; 313:1050–1054.

    Google Scholar 

  94. Regitz V, Shug AL, Fleck E. Defective myocardial carnitine metabolism in congestive heart failure secondary to dilated cardiomyopathy and to coronary, hypertensive and valvular heart diseases. Am J Cardiol 1990;65:755–760.

    Google Scholar 

  95. Schwartz K, Carrier L, Mercadier J-J, Lompre A-M, Boheler KR. Molecular phenotype of the hypertrophied and failing myocardium. Circulation 1993;87(Suppl VII):VII5-VII10.

    Google Scholar 

  96. Feldman AM, Weinberg EO, Ray PE, Lorell BH. Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 1993;73:184–192.

    Google Scholar 

  97. Sullivan MJ, Hawthorne MH. Exercise intolerance in patients with chronic heart failure. Prog Cardiovasc Dis 1995; 38:1–22.

    Google Scholar 

  98. Ryan KR, Jensen RE. Protein translocation across mitochondrial membranes: What a long, strange trip it is. Cell 1995;83:517–519.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odiet, J.A., Wei, J.Y. Heart failure and the aging myocardium: Possible role of cardiac mitochondria. Heart Failure Rev 1, 139–149 (1996). https://doi.org/10.1007/BF00126378

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126378

Key Words

Navigation