Skip to main content
Log in

Characterization study of the ryanodine receptor and of calsequestrin isoforms of mammalian skeletal muscles in relation to fibre types

  • Paper
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

We have investigated high-affinity ryanodine-binding sites in membrane preparations from representative fast-twitch and slow-twitch muscles of the rabbit and rat, as well as from human mixed muscle. Our results, obtained in high-ionic strength binding buffer, demonstrate extensive similarities in binding affinity for [3H]ryanodine (Kd: about 10 nM) and a two-fold to four-fold difference in membrane density of the ryanodine receptor between fast-twitch and slow-twitch muscle of the rat and rabbit, respectively. The [3H]ryanodine-pCa relationship for the Ca2+-activation curve of ryanodine binding was found to be similar for all mammalian muscles, as tested at 20 nM ryanodine. With 10 mM caffeine or 50 μM doxorubicin the pCa for half-maximal activation of [3H]ryanodine binding invariably shifted from an average pCa value of 6.5 to pCa 7.1–7.3. IC50 values for the inhibition of [3H]ryanodine binding by Ruthenium Red, a Ca2+-release channel blocker, did not differ significantly (range 0.3–1.0 μM). The Ca2+-dependence curve (range 1 nM–10 mM free Ca2+) that we have observed at 5 nM ryanodine, for [3H]ryanodine binding to terminal cisternae from rabbit fast-twitch, as well as slow-twitch muscle, is bell-shaped and differs from that obtained with cardiac terminal cisternae from the same species. Cardiac ryanodine receptor is also clearly distinguishable for electrophoretic mobility, Cleveland's peptide maps, and, most strikingly, for total lack of cross-reactivity with polyclonal antibody to fast skeletal RyR. By the same properties, the ryanodine receptor of fast- and slow-twitch muscle appear to be the same or a similar protein. On investigating the composition of calsequestrin in rat and human skeletal muscles, both in membrane-bound form and after purification by phenyl-Sepharose chromatography, we have been able to show that, independent of the animal species, the cardiac isoform, as characterized by the identical amino-terminal amino-acid sequence, pattern of immunoreactivity, and lack of Ca2+-dependent shift in mobility on SDS-PAGE, is exclusively expressed in slow-twitch fibres, together with the main fast-skeletal calsequestrin isoform. While our experimental findings strongly argue for the presence of only one population of skeletal-specific Ca2+-release channels in junctional terminal cisternae of mammalian fast-twitch and slow-twitch muscle, they at the same time suggest the existence of differences in calsequestrin modulation of Ca2+-release, depending on its isoform composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AIREY, J. A., BECK, C. F., MURAKAMI, K., TANKSLEY, S. J., DEERINCK, T. J., ELLISMAN, M. H. & SUTKO, J. (1990) Identification and localization of two triad junctional foot protein isoforms in mature avian fast twitch skeletal muscle. J. Biol. chem. 265, 114187–95.

    Google Scholar 

  • APPELT, D., BUENVIAJE, B., CHAMP, C. & FRANZINI-ARMSTRONG, C. (1989) Quantitation of ‘junctional feet’ content in two types of muscle fibers from hind limb muscles of the rat. Tissue & Cell 21, 783–94.

    Google Scholar 

  • ARAI, M., OTSU, K., MACLENNAN, D. H. & PERIASAMY, M. (1992) Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development. Am. J. Physiol. 262, C614–20.

    Google Scholar 

  • ASHLEY, C. C., MULLIGAN, I. P. & LEA, T. J. (1991) Ca2+ and activation mechanisms in skeletal muscle. Quarterly Rev. Biophys. 24, 1–73.

    Google Scholar 

  • BIRAL, D., DAMIANI, E., VOLPE, P., SALVIATI, G. & MARGRETH, A. (1982) Polymorphism of myosin light chains. An electrophoretic and immunological study of rabbit skeletal muscle myosins. Biochem. J. 203, 529–40.

    Google Scholar 

  • BIRAL, D., VOLPE, P., DAMIANI, E. & MARGRETH, A. (1992) Coexistence of two calsequestrin isoforms in rabbit slow-twitch skeletal muscle fibers. FEBS Lett. 299, 175–8.

    Google Scholar 

  • BLOCK, B. A., IMAGAWA, T., CAMPBELL, K. P. & FRANZINI-ARMSTRONG, C. (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol. 107, 2587–600.

    Google Scholar 

  • BRANDL, C. J., GREEN, N. M., KORCZACK, B. & MACLENNAN, D. H. (1986) The two Ca2+-ATPase genes: homologies and mechanistic implications of deduced amino acid sequence. Cell 44, 597–607.

    Google Scholar 

  • CALA, S. & JONES, L. R. (1983) Rapid purification of calsequestrin from cardiac and skeletal muscle sarcoplasmic reticulum vesicles by Ca-dependent elution from phenyl-Sepharose. J. Biol. Chem. 258, 11932–6.

    Google Scholar 

  • CALA, S. & MILES, K. (1992) Phosphorylation of the cardiac isoform of calsequestrin in cultured rat myotubes and rat skeletal muscle. Biochim. Biophys. Acta 1118, 277–87.

    Google Scholar 

  • CALA, S., SCOTT, B. T. & JONES, L. R. (1990) Intralumenal sarcoplasmic reticulum Ca2+-binding proteins. Seminars in Cell Biology, 1, 265–75.

    Google Scholar 

  • CHEN, S. R. W., ZHANG, L. & MACLENNAN (1992) Characterization of a Ca2+ binding and regulatory site in the Ca2+ release channel (ryanodine receptor) or rabbit skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 267, 23318–26.

    Google Scholar 

  • CHU, A., DIAZ-MUNOZ, M., HAWKES, M. J., BUSH, K. & HAMILTON, S. L. (1990) Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel. Mol. Pharmacol. 37, 735–41.

    Google Scholar 

  • CHUA, M. & DULHUNTY, A. F. (1988). Inactivation of excitation-contraction coupling in rat extensor digitorum longus and soleus muscles. J. Gen. Physiol. 91, 737–57.

    Google Scholar 

  • CLEVELAND, D. W., FISCHER, S. G., KIRSCHNER, M. W. & LAEMMLI, U. K. (1975) Peptide mapping by limited proteolysis in sodium dodecyl sulphate by gel electrophoresis. J. Biol. Chem. 252, 1102–6.

    Google Scholar 

  • CLOSE, R. I. (1972) Dynamic properties of mammalian skeletal muscles. J. Physiol. 52, 129–96.

    Google Scholar 

  • COLLINS, J. H., TARCSAFALVI, A. & IKEMOTO, N. (1990) Identification of a region of calsequestrin that binds to the junctional face membrane of sarcoplasmic reticulum. Biochem. Biophys. Res. Comm. 167, 189–93.

    Google Scholar 

  • DAMIANI, E. & MARGRETH, A. (1990) Specific protein-protein interaction of calsequestrin with junctional sarcoplasmic reticulum of skeletal muscle. Biochem. Biophys. Res. Comm. 172, 1253–9.

    Google Scholar 

  • DAMIANI, E. & MARGRETH, A. (1991) Subcellular fractionation to junctional sarcoplasmic reticulum and biochemical characterization of 170 kDa Ca2+-and low-density-lipoprotein-binding protein in rabbit skeletal muscle. Biochem. J. 277, 825–32.

    Google Scholar 

  • DAMIANI, E., SALVATORI, S., ZORZATO, F. & MARGRETH, A. (1986) Characteristics of skeletal muscle calsequestrin: comparison of mammalian, amphibian and avian muscles. J. Muscle Res. Cell Motil. 7, 435–45.

    Google Scholar 

  • DAMIANI, E., VOLPE, P. & MARGRETH, A. (1990) Coexpression of two isoforms of calsequestrin in rabbit slow-twitch muscle. J. Muscle Res. Cell Motil. 11, 522–30.

    Google Scholar 

  • DAMIANI, E., TOBALDIN, G., VOLPE, P. & MARGRETH, A. (1991) Quantiation of ryanodine receptor of rabbit skeletal muscle, heart and brain. Biochem. Biophys. Res. Comm. 175, 858–65.

    Google Scholar 

  • DAMIANI, E., TARUGI, P., CALANDRA, S. & MARGRETH, A. (1992) Sequential expression during postnatal development of specific markers of junctional and free sarcoplasmic reticulum in chicken pectoralis muscle. Develop. Biol. 153, 102–14.

    Google Scholar 

  • DULHUNTY, A. F. (1992) The voltage-activation of contraction in skeletal muscle. Prog. Biophys. molec. Biol. 57, 181–23.

    Google Scholar 

  • EUSEBI, F., MILEDI, R. & TAKAHASHI, T. (1980) Calcium transients in mammalian muscles. Nature 284, 560–1.

    Google Scholar 

  • Fabiato, A. (1988) Computer programs for calculating total from specified free of free from specified total ionic concentrations in aqueous solution containing multiple metals and ligands. Methods Enzymol. 157, 378–401.

    Google Scholar 

  • FILL, M., MEJIA-ALVAREZ, R., ZORZATO, F., VOLPE, P. & STEFANI, E. (1991) Antibodies as probes for ligand gating of single sarcoplasmic reticulum Ca2+-release channels. Biochem. J. 273, 449–57.

    Google Scholar 

  • FLEISCHER, S. & INUI, M. (189) Biochemistry and biophysics of excitation-contraction coupling. Ann. Rev. Biophys. biophys. Chem. 18, 333–64.

    Google Scholar 

  • FLIEGEL, L., LEBERER, E., GREEN, N. M. & MACLENNAN, D. H. (1989) The fast-twitch calsequestrin isoform predominates in rabbit slow-twitch soleus muscle. FEBS Lett. 242, 297–300.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C., FERGUSON, D. G. & CHAMP, C. (1988) Discrimination between fast-and slow-twitch fibres of guinea pig skeletal muscle using the relative surface density of junctional transverse tubule membrane. J. Muscle Res. Cell Motil. 9, 403–14.

    Google Scholar 

  • FRYIER, M. W. & NEERING, I. R. (1989) Actions of caffeine on fast- and slow-twitch muscles of the rat. J. Physiol. 416, 435–54.

    Google Scholar 

  • GARCIA, J. & STEFANI, E. (1990) Calcium transients in rat skeletal muscle: evidence for Ca2+-regulated Ca2+-release process. Biophys. J. 57, 400a.

    Google Scholar 

  • GILLIS, J. M. (1985) Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches. Biochim. Biophys. Acta 811, 97–145.

    Google Scholar 

  • HYMEL, L., SCHINDLER, H., INUI, M. & FLEISCHER, S. (1988) Reconstitution of purified cardiac muscle calcium release channel (ryanodine receptor) in planar bilayers. Biochem. Biophys. Res. Comm. 152, 308–14.

    Google Scholar 

  • IKEMOTO, N., RONJAT, M., MESZAROS, L. G. & KOSHITA, M. (1989) Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum. Biochemistry 28, 6764–71.

    Google Scholar 

  • IKEMOTO, N., ANTONIU, B., KANG, J.-J., MESZAROS, L. G. & RONJAT, M. (1991) Intravesicular calcium transient during calcium release from sarcoplasmic reticulum. Biochemistry 30, 5230–7.

    Google Scholar 

  • IMAGAWA, T., TAKASAGO, T. & SHIGEKAWA, M. (1989) Cardiac ryanodine receptor is absent in type I slow skeletal muscle fibers: immunochemical and ryanodine binding studies. J. Biochem. 106, 342–8.

    Google Scholar 

  • INUI, M., SAITO, A. & FLEISCHER, S. (1987) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 262, 1740–7.

    Google Scholar 

  • INUI, M., WANG, S., SAITO, A. & FLEISCHER, S. (1988) Characterization of junctional and longitudinal sarcoplasmic reticulum from heart muscle. J. Biol. Chem. 263, 10843–50.

    Google Scholar 

  • JAMES, P., INUI, M., TADA, M., CHIESI, M. & CARAFOLI, E. (1989) Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 342, 90–2.

    Google Scholar 

  • JORGENSEN, A. O. & JONES, L. R. (1986) Localization of phosphalamban in slow but not fast canine skeletal muscle fibers. An immunocytochemical and biochemical study. J. Biol. Chem. 261, 3775–81.

    Google Scholar 

  • LAEMMLI, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5.

    Google Scholar 

  • LAI, F. A., ERICKSON, H. E., ROUSSEAU, E., LIU, Q.-Y. & MEISSNER, G. (1988a) Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331, 315–19.

    Google Scholar 

  • LAI, F. A., ANDERSON, K., ROUSSEAU, E., LIU, Q.-Y. & MEISSNER, G. (1988b) Evidence for a Ca2+ channel within the ryanodine receptor complex from cardiac sarcoplasmic reticulum. Biochem. Biophys. Res. Comm. 151, 441–9.

    Google Scholar 

  • LAI, F. A., LIU, Q.-Y., EL-HASHEM, A., KRAMARCY, N. R., SEALOCK, R. & MEISSNER, G. (1992) Amphibian ryanodine receptor isoforms are related to those of mammalian skeletal or cardiac muscle. Am. J. Physiol. 263, C365–72.

    Google Scholar 

  • LAMB, G. D. & WALSH, T. (1987) Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit. J. Physiol. 393, 595–617.

    Google Scholar 

  • LEE, Y. S., ONDRIAS, K., DUHL, A. J., ERHLICH, B. E. & KIM, D. H. (1991) Comparison of calcium release from sarcoplasmic reticulum of slow and fast twitch muscle. J. Membr. Biol. 122, 155–63.

    Google Scholar 

  • LESH, R. E., MARKS, A. R., SOMLYO, A. V., FLEISCHER, S. & SOMLYO, A. P. (1993) Anti-ryanodine receptor antibody binding sites in vascular and endocardial endothelium. Circ. Res. 72, 481–8.

    Google Scholar 

  • LOMPRE, A. M., LAMBERT, F., LAKATTA, E. G. & SCHWARTZ, K. (1991) Expression of sarcoplasmic reticulum Ca2+-ATPase and calsequestrin genes in rat heart during ontogenic development and aging. Circ. Res. 69, 1380–8.

    Google Scholar 

  • LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L. & RANDALL, R. J. (1951) Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193, 265–75.

    Google Scholar 

  • MACLENNAN, D. H. & WONG, P. T. S. (1971) Isolation of a calcium sequestering protein from sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 249, 980–4.

    Google Scholar 

  • MARUYAMA, K., MIKAWA, T. & EBASHI, S. (1984) Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulphate electrophoresis. J. Biochem. 95, 511–19.

    Google Scholar 

  • MATSUDAIRA, P. (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262, 10035–8.

    Google Scholar 

  • MITCHELL, R. D., SIMMERMAN, H. B. K. & JONES, L. R. (1988) Ca2+-binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J. Biol. Chem. 263, 1376–81.

    Google Scholar 

  • MORRISSEY, J. H. (1981) Silver strain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Analyt. Biochem. 117, 307–10.

    Google Scholar 

  • OGAWA, Y. & HARAFUJI, J. (1990a) Effect of temperature on [3H]ryanodine binding to sarcoplasmic reticulum from bullfrog skeletal muscle. J. Biochem. 107, 887–93.

    Google Scholar 

  • OGAWA, Y. & HARAFUJI, H. (1990b) Osmolarity-dependent characteristics of [3H]ryanodine binding to sarcoplasmic reticulum. J. Biochem. 107, 894–8.

    Google Scholar 

  • OLIVARES, E. G., TANKSLEY, S. J., AIREY, J. A., BECK, C. F., OUYANG, Y., DEERINCK, T. J., ELLISMAN, M. H. & SUTKO, J. L. (1991) Nonmammalian vertebrate skeletal muscles express two triad junctional foot protein isoforms. J. Cell Biol. 59, 1153–63.

    Google Scholar 

  • OTSU, K., WILLARD, H. F., KHANNA, V. K., ZORZARO, F., GREEN, N. M. & MACLENNAN, D. H. (1990) Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) for rabbit cardiac muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 13472–83.

    Google Scholar 

  • PALADE, P., DETTBARN, C., BRUNDER, D., STEIN, P. & HALS, G. (1989) Pharmacology of calcium release from sarcoplasmic reticulum. J. Bioenergetics Biomembr. 21, 295–320.

    Google Scholar 

  • PESSAH, I. N., FRANCINI, A., SCALES, D., WATERHOUSE, A. & CASIDA, J. E. (1986) Calcium-ryanodine receptor complex. Solubilization and partial characterization from skeletal junctional sarcoplasmic reticulum vesicles. J. Biol. Chem. 261, 8643–8.

    Google Scholar 

  • PESSAH, I. N., DURIE, E. L., SCHIEDT, M. J. & ZIMANYI, I. (1990) Anthraquinone-sensitized Ca2+-release channel from the rat cardiac SR: possible receptor-mediated mechanism of doxorubicin cardiomyopathy. Molec. Pharmacol. 37, 503–14.

    Google Scholar 

  • PETTE, D. & VRBOVA, G. (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev. Physiol. Biochem. Pharmacol. 120, 115–202.

    Google Scholar 

  • PICELLO, E., DAMIANI, E. & MARGRETH, A. (1992) Low-affinity Ca2+-binding sites versus Zn2+-binding sites in histidine-rich Ca2+-binding protein of skeletal muscle sarcoplasmic reticulum. Biochem. Biophys. Res. Comm. 186, 659–67.

    Google Scholar 

  • RIOS, E., PIZARRO, G. & STEFANI, E. (1992) Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. Ann. Rev. Physiol. 54, 109–33.

    Google Scholar 

  • ROUSSEAU, E., LADINE, J., LIU, Q-Y, & MESISSNER, G. (1988) Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch. Biochem. Biophys. 267, 75–86.

    Google Scholar 

  • SACCHETTO, R., VOLPE, P., DAMIANI, E. & MARGRETH, A. (1993) Postnatal development of rabbit fast-twitch skeletal muscle: accumulation, isoform transition and fiber distribution of calsequestrin. J. Muscle Res. Cell. Motil. 14, 000–000.

    Google Scholar 

  • SAITO, A., SEILER, S., CHU, A. & FLEISCHER, S. (1984) Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J. Cell Biol. 99, 875–85.

    Google Scholar 

  • SALVATORI, S., DAMIANI, E., ZORZATO, F., VOLPE, P., PIEROBON, S., QUAGLINO, D.Jr., SALVIATI, G. & MARGRETH, A. (1988) Denervation-induced proliferative changes of triads in rabbit skeletal muscle. Muscle Nerve 11, 1246–59.

    Google Scholar 

  • SALVIATI, G. & VOLPE, P. (1988) Ca2+ release from sarcoplasmic reticulum of skinned fast-and slow-twitch muscle fibers. Am. J. Physiol. 254, C459–65.

    Google Scholar 

  • SALVIATI, G., VOLPE, P., SALVATORI, S., BETTO, R., DAMINAI, E., MARGRETH, A. & PASQUALI-RONCHETTI, I. (1982) Biochemical heterogeneity of skeletal-muscle microsomal membranes. Membrane origin, membrane specificty, and fiber types. Biochem. J. 202, 289–301.

    Google Scholar 

  • SCHMID, A., KAZAZOGLOU, T., RENAUD, J. & LAZDUNSKI, M. (1984) Comparative changes of levels of nitrendipine Ca-channels, of tetrodoxin-sensitive Na-channels and of ouabain-sensitive (Na-K)-ATpase following denervation of rat and chick skeletal muscle. FEBS Lett. 172, 114–18.

    Google Scholar 

  • SCOTT, B. T., SIMMERMAN, H. K. B., COLLINS, J. H., NADAL-GINARD, B. & JONES, L. R. (1988) Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J. Biol. Chem. 263, 8958–64.

    Google Scholar 

  • SCHNEIDER, M. F. & CHANDLER, W. K. (1973) Voltage-dependent charge movement in skeletal muscle: a possible step in excitation contraction coupling. Nature 242, 244–6.

    Google Scholar 

  • SLUPSKY, J. R., OHNISHI, M., CARPENTER, M. R. & REITHMEIER, R. A. F. (1987) Characterization of cardiac calsequestrin. Biochemistry 26, 6539–44.

    Google Scholar 

  • SORRENTINO, V. & VOLPE, P. (1993) Ryanodine receptors: how many, where and why? TiPs 14, 98–103.

    Google Scholar 

  • TAKESHIMA, H., NISHIMURA, S., MATSUMOTO, T., ISHIDA, H., KANGAWA, K., MINAMINO, N., MATSUO, H., UEDA, M., HANAOKA, M., HIROSE, T. & NUMA, S. (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339, 439–45.

    Google Scholar 

  • TAKESHIMA, H., NISHIMURA, S., NISHI, M., IKEDA, M. & SUGIMOTO, T. (1993) A brain-specific transcript from the 3′-terminal region of the skeletal muscle ryanodine receptor gene. FEBS Lett. 322, 105–10.

    Google Scholar 

  • TOWBIN, A., STAHELIN, T. & GORDON, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose. Proc. Natl. Acad. Sci. USA 76, 4350–4.

    Google Scholar 

  • TREVES, S., CHIOZZI, P. & ZORZATO, F. (1993) Identification of the domain recognized by anti (ryanodine receptor) antibodies which affect Ca2+-induced Ca2+ release. Biochem. J. 291, 757–63.

    Google Scholar 

  • VOLPE, P., BIRAL, D., DAMIANI, E. & MARGRETH, A. (1981) Characterization of human muscle myosins with respect to the light chains. Biochem. J. 195, 251–8.

    Google Scholar 

  • VOLPE, P. & SIMON, B. J. (1991) The bulk of Ca2+ released to the myoplasm is free in the sarcoplasmic reticulum and does not unbind from calsequestrin. FEBS Lett. 278, 274–8.

    Google Scholar 

  • WITCHER, D., KOVACS, R. J., SCHULMAN, H., CEFALI, D. & JONES, L. R. (1991) Unique phosphorylation site on the cardiac ryanodine receptor regulated calcium channel activity. J. Biol. Chem. 266, 11144–52.

    Google Scholar 

  • ZIMANYI, I. & PESSAH, I. M. (1991) Comparison of [3H]ryanodine receptor and Ca++ release from rat cardiac and rabbit skeletal muscle sarcoplasmic reticulum. J. Pharmacol. Exp. Therapeutics 256, 938–46.

    Google Scholar 

  • ZORZATO, F., SALVIATI, G., FACCHINETTI, T. & POMPEO, VOLPE (1985) Doxorubicin induces calcium release from terminal cisternae of skeletal muscle. A study on isolated sarcoplasmic reticulum and chemically skinned fibers. J. Biol. Chem. 260, 7349–55.

    Google Scholar 

  • ZORZATO, F., CHU, A. & VOLPE, P. (1989) Antibodies to junctional sarcoplasmic reticulum proteins: probes for the Ca2+-release channel. Biochem. J. 261, 863–70.

    Google Scholar 

  • ZORZATO, F., VOLPE, P. DAMIANI, E., QUAGLINO, D.Jr & MARGRETH, A. (1989) Terminal cisternae of denervated rabbit skeletal muscle: alterations of functional properties of Ca2+-release channels. Am. J. Physiol. 257, C504–11.

    Google Scholar 

  • ZORZATO, F., FUJII, J., OTSU, K., PHILLIPS, M., GREEN, N. M., LAI, F. A., MEISSNER, G. & MACLENNAN, D. H. (1990) Molecular cloning of cDNA encoding human and rabbit forms of the Ca++ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 2244–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damiani, E., Margreth, A. Characterization study of the ryanodine receptor and of calsequestrin isoforms of mammalian skeletal muscles in relation to fibre types. J Muscle Res Cell Motil 15, 86–101 (1994). https://doi.org/10.1007/BF00130421

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00130421

Keywords

Navigation