Skip to main content
Log in

Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue?

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The choroidal circulation can be studied by an angiographic technique which utilizes near-infrared light wavelengths and a biocompatible dye, indocyanine green (CardiogreenR). Near-infrared light is less absorbed than visible light by the pigment epithelium and the macular xanthophyll, and indocyanine green (ICG) dye doesn't leak from the choriocapillaris as sodium fluorescein dye typically does. Due to the high rate of choroidal blood flow, a fundus camera adapted with special filters and a continuous light source was used in order to make angiograms at the rate of 10 per second.

Our experience at the Wilmer Institute and the Eye Clinic at St. Gallen includes 180 choroidal angiograms of normal volunteers and approximately 500 choroidal angiograms of patients with several fundus diseases, mainly senile macular degeneration, diabetic retinopathy and choroidal tumors. Although many of our results are preliminary, we present them to demonstrate the potential applications of this method in ophthalmology. Some factors which may have inhibited an extensive propagation of clinical choroidal angiography in the past are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alm A (1983) Microcirculation of the eye. In: Mortillaro NA (ed): The physiology and pharmacology of the microcirculation. New York, Academic Press

    Google Scholar 

  • Amalric PM (1973) Choroidal vessel occlusive syndromes - clinical aspects. Trans Amer Acad Ophthal Otolaryng 77:291–299

    Google Scholar 

  • Amalric P (1974) Veines choroidiennes, état normal et pathologique. Ann Oculist (Paris) 207:161–183

    Google Scholar 

  • American National Standards Institute (ANSI) (1976) Safe Use of Lasers, Standard Z-136.1. New York, ANSI

    Google Scholar 

  • Ansari A, Lambrecht RM, Packer S, Atkins HL, Redvanly CS and Wolf AP (1975) Note on the distribution of Iodine-123-labeled Indocyanine Green in the Eye. Invest Ophthal 14:780–782

    Google Scholar 

  • Apple DJ and Naumann GOH (1980) Missbildungen und Anomalien des ganzen Auges. In: Naumann GOH (ed): Pathologie des Auges. Berlin, Springer-Verlag, pp 57–87

    Google Scholar 

  • Araki M (1976) Observations on the corrosion casts of the choriocapillaris. Acta Soc Ophthal Jpn 80:315–326

    Google Scholar 

  • Archer D, Krill AF and Newell FW (1970) Fluorescein studies of normal choroidal circulation, Amer J Ophthal 69:543–554

    Google Scholar 

  • Archer DB, Krill AE and Ernest JT (1972) Choroidal vascular aspects of degenerations of the retinal pigment epithelium. Trans Ophthal Soc UK 92:187–207

    Google Scholar 

  • Bacin F, Buffet JM and Mutel N (1981) Angiographie par absorption, en infrarouge, au Vert Indocyanine. Aspects chez le sujet normal et dans les tumeurs choroidiennes. Bull Soc Ophtal Fr 81:315–319

    Google Scholar 

  • Behrendt T and Wilson LA (1965) Spectral reflectance photography of the retina. Amer J Ophthal 59:1079–1088

    Google Scholar 

  • Benson RC and Kues HA (1978) Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol 23:159–163

    Google Scholar 

  • Bill A (1981) Ocular Circulation. In: Moses RA (ed): Adler's Physiology of the Eye, 7th ed. St. Louis, Mosby, pp 184–203

    Google Scholar 

  • Bischoff PM and Flower RW (1983) High pressure in choroidal arteries as a possible pathogenetic mechanism in senile macular degeneration. Amer J Ophthal 96:398–399

    Google Scholar 

  • Bischoff PM, Wajer SD and Flower RW (1983) Scanning electron microscopic study of the hyaloid vascular system in newborn mice exposed to 02 and C02. Graefe's Arch Clin Exp Ophthal 220:257–263

    Google Scholar 

  • Bloome MA (1980) Fluorescein angiography: Risks. Vision Res 20:1083–1097

    Google Scholar 

  • Buffet JM, Bacin F and Audouin MC (1979) Une téchnique simple de-angiographie en infra-rouge au Vert d'Indocyanine. Bull Soc Ophtal Fr 79:209–211

    Google Scholar 

  • Carski TR, Staller BJ, Hepner G, Banka V and Finney RA (1978) Adverse reactions after administration of indocyanine gree. J Amer Med Ass 240:635

    Google Scholar 

  • Cherrick GR, Stein SW, Leevy CM and Davidson CS (1960) Indocyanine Green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest 39:592–600

    Google Scholar 

  • Chopdar A, Turk AM and Hill DW (1978) Fluorescent infra-red angiography of the fundus oculi using indocyanine green dye. Trans Ophthal Soc UK 98:142–146

    Google Scholar 

  • Colenbrander MC (1975) Hydrostatische Druckverhältinisse im Auge. Fluorescein erscheint erst in der Aderhaut und dann in der Netzhaut. Wie kann man das erklären? Klin Mbl Augenheilk 167:94–97

    Google Scholar 

  • Craandijk A and Van Beek CA (1976) Indocyanine green fluorescence angiography of the choroid. Brit J Ophthal 60:377–385

    Google Scholar 

  • David NJ (1971) Infra-red absorption fundus angiography. In: Proc. Int. Symp. Fluorescein Angiography Albi, 1969. Basel, Karger, pp 189–192

    Google Scholar 

  • De Venecia G, Wallow I, Houser D and Wahlstrom M (1980) The eye in accelerated hypertension. I. Elschnig's spots in nonhuman primates. Arch Ophthal 98:913–918

    Google Scholar 

  • Ditzel J (1976) Oxygen transport impairment in diabetes. Diabetes 25:832–838

    Google Scholar 

  • Donders FC (1855) Beiträge zur pathologischen Anatomie des Auges. Graefes Arch Ophthal I (2):106–118

    Google Scholar 

  • Engerman R, Bloodworth JMB and Nelson S (1977) Relationship of microvascular disease in diabetes to metabolic control. Diabetes 26:760–769

    Google Scholar 

  • Enzmann V and Ruprecht KW (1982) Zwischenfälle bei der Fluoreszenzangiographie der Retina. Klin Mbl Augenheilk 181:235–239

    Google Scholar 

  • Ernest JT (1977) The effect of systolic hypertension on Rhesus monkey eyes after ocular sumpathectomy. Amer J Ophthal 84:341–344

    Google Scholar 

  • Flower RW (1972) Infrared absorption angiography of the choroid and some observations on the effects of high intraocular pressures. Amer J Ophthal 74:600–614

    Google Scholar 

  • Flower RW (1973) Injection technique for indocyanine green and sodium fluorescein dye angiography of the eye. Invest. Ophthal 12:881–895

    Google Scholar 

  • Flower RW (1974) Choroidal angiography using indocyanine green dye: A review and progress report. Ophthal Digest 36:18–27

    Google Scholar 

  • Flower RW (1976) High speed human choroidal angiography using indocyanine green dye and a continuous light source. Docum Ophthal Proc Ser 9:59–66

    Google Scholar 

  • Flower RW (1977) Simple adaptors for fast conversion of a fundus camera for rapid-sequence ICG fluorescence choroidal angiography. J Biol Photogr 45:43–47

    Google Scholar 

  • Flower RW (1980) Choroidal fluorescent dye filling patterns. A comparison of high speed indocyanine green and fluorescein angiograms. Int Ophthal 2:143–149

    Google Scholar 

  • Flower RW and Hochheimer BF (1972) Clinical infrared absorption angiography of the choroid. Amer J Ophthal 73:458–459

    Google Scholar 

  • Flower RW and Hochheimer BF (1973) A clinical technique and apparatus for simultaneous angiography of the separate retinal and choroidal circulations. Invest Ophthal 12:248–261

    Google Scholar 

  • Flower RW and Hochheimer BF (1976) Indocyanine green dye fluorescence and infrared absorption choroidal angiography performed simultaneously with fluorescein angiography. Johns Hopkins Med J 138:33–42

    Google Scholar 

  • Flower RW, Speros P and Kenyon LR (1977) Electroretinographic changes and choroidal defects in a case of central retinal artery occlusion. Amer J Ophthal 83:451–459

    Google Scholar 

  • Fox IJ and Wood EH (1960) Indocyanine green: Physical and physiologic properties. Mayo Clin Proc 35:732–744

    Google Scholar 

  • François P, Turut P and Delannoy C (1977) L'angiogluorographie choroidienne à l'indocyanine. Bull Soc Ophtal Fr 77:971–972

    Google Scholar 

  • Friedman E, Smith TR, Kuwabara T and Beyei CK (1964) Choroidal vascular patterns in hypertension. Arch Ophthal 71:842–850

    Google Scholar 

  • Garner A (1982) Vascular disorders. In: Garner A and Klintworth GK (eds): Pathobiology of Ocular Disease, part B. New York, Marcel Dekker, pp 1479–1575

    Google Scholar 

  • Gass JDM (1977) Problems in the differential diagnosis of choroidal nevi and malignant melanomas (33rd Edward Jackson Memorial Lecture). Amer J Ophthal 83:299–323

    Google Scholar 

  • Geeraets WJ, Williams RC, Chan G, Ham WT, Guerry D and Schmidt FH (1960) The loss of light energy in retina and choroid. Arch Ophthal 64:606–615

    Google Scholar 

  • Geltzer AI and Berson EL (1969) Fluorescein angiography of hereditary retinal degeneration. Arch Ophthal 81:776–782

    Google Scholar 

  • Goldmann H (1932) Experimentelle Untersuchungen über die Genese des Feuerstares: I. Mitteilung. Graefes Arch Ophthal 128:413–446

    Google Scholar 

  • von Graefe A (1954) Vorwort. Graefes Arch Ophthal I:III-X

    Google Scholar 

  • Green WR (1980) Clinicopathologic studies of senile macular degeneration. In: Nicholson DH (ed): Ocular Pathology Update. New York, Masson, pp 115–144

    Google Scholar 

  • Habozit F (1976) Angiographie choroidienne au vert d'indocyanine. Thése Lyon Méd

  • Haining WM (1981) Video fundoscopy and fluoroscopy. Brit J Ophthal 65:702–706

    Google Scholar 

  • Hayashi K, Nakase Y, Nishiyama A, Tokoro T and Yoshida T (1982) Indocyanine Green Fluorescence Angiography, Report 2. Studies on New Interference Filters. Acta Soc Ophthal Jpn 86:1532–1539

    Google Scholar 

  • Hayreh SS (1975) Segmental nature of the choroidal vasculature. Brit J Ophthal 59:631–648

    Google Scholar 

  • Hayreh SS and Baines JAB (1973) Occlusion of the vortex veins. Brit J Ophthal 57:217–238

    Google Scholar 

  • Hepburn ML (1912) Inflammatory and vascular diseases of the choroid. Trans Ophthal Soc UK 32:361–386

    Google Scholar 

  • Hidayat AA and Fine BS (1983) Diabetic choroidopathy. Invest Ophthal Vis Sci 24 (suppl):247

    Google Scholar 

  • Hochheimer BF (1971) Angiography of the retina with Indocyanine Green. Arch Ophthal 86:564–565

    Google Scholar 

  • Hochheimer BF (1979) A dye for experimental choroidal angiography. Exp Eye Res 29:141–143

    Google Scholar 

  • Hogan MJ (1961) Electron microscopy of the human choroid. III. The blood vessels. Amer J. Ophthal 51:1084–1097

    Google Scholar 

  • Hyvärinen L and Flower RW (1980) Indocyanine Green fluorescence angiography. Acta Ophthal 58:528–538

    Google Scholar 

  • Hyvärinen L, Maumenee AE, George T and Weinstein GW (1969) Fluorescein angiography of the choriocapillaris. Amer J Ophthal 67:653–666

    Google Scholar 

  • Hyvärinen L, Maumenee AE, Kelley J and Cantollino S (1971) Fluorescein angiographic findings in retinitis pigmentosa. Amer J Ophthal 71:17–26

    Google Scholar 

  • Iseki K, Onoyama K, Fujimi S and Omae T (1980) Shock caused by Indocyanine Green dye in chronic hemodialysis patients (letter). Clin Nephrol 14:210

    Google Scholar 

  • Ketterer SG, Wiegard BD and Rapaport E (1960) Hepatic uptake and biliary excretion of Indocyanine Green and its use in estimation of hepatic blood flow in dogs. Amer J Physiol 199:481–484

    Google Scholar 

  • Klien BA (1968) Ischemic infarcts of the choroid (Elschnig spots). Amer J Ophthal 66:1069–1074

    Google Scholar 

  • Kogure K and Choromokos E (1969) Infrared absorption angiography. J Appl Physiol 26:154–157

    Google Scholar 

  • Kogure K, David NJ, Yamanouchi V and Choromokos E (1970) Infrared absorption angiography of the fundus circulation. Arch Ophthal 83:209–214

    Google Scholar 

  • Krey HF (1975) Segmental vascular patterns of the choriocapillaris. Amer J Ophthal 80:198–202

    Google Scholar 

  • Leber T (1903) Die Circulations- und Ernährungsverhältnisse des Auges. In: Graefe-Saemisch: Handbuch der gesamten Augenheilkunde, 2. Aufl., Bd.2/2. Leipzig, Verlag W. Engelmann, pp 1–534

    Google Scholar 

  • Leevy CM, Smith F and Kierman T (1976) Liver function tests. In: Bochus, HL (ed): Gastroenterology, 3rd ed., vol. 3. Philadelphia, Saunders, pp 68–82

    Google Scholar 

  • Leibowitz HM, Krueger DE and Maunder LR et al. (1980) The Framingham Eye Study Monograph. Surv Ophthal 24 (Suppl):334–610

    Google Scholar 

  • Lutty GA (1978) The acute intravenous toxicity of biological stains, dyes, and other fluorescent substances. Toxicol Appl Pharmacol 44:225–249

    Google Scholar 

  • Lutty GA (1979) An intraperitoneal survey of biological stains, dyes, and other fluorescent substances. Bull Nippon Kanhoh-Shihiso Kenkyusho 50:25–50

    Google Scholar 

  • Macular Photocoagulation Study Group (1982) Argon laser photocoagulation for senile macular degeneration, Results of a randomized clinical trial. Arch Ophthal 100:912–918

    Google Scholar 

  • Müller H (1856) Anatomische Beiträge zur Ophthalmologie. Graefes Arch Ophthal II (2):1–69

    Google Scholar 

  • Naumann GOH (1980) Uvea. In: Naumann GOH (ed): Pathologie des Auges. Berlin, Springer-Verlag, pp 408–500

    Google Scholar 

  • Novotny HR and Alvis DL (1961) A method of photographic fluorescence in circulating blood in the human retina. Circulation 24:82–86

    Google Scholar 

  • Nyama M, Ohkuma H, Itotagawa S, Koshibu A, Uraguchi K and Miki K (1980) Pathology of choroidal circulatory disturbance. I. Angioarchitecture of the choroid, observation on plastic cast preparation. Acta Soc Ophthal Jpn 84:1893–1909

    Google Scholar 

  • Orth DH, Patz A and Flower RW (1976) Potential clinical applications of Indocyanine Green choroidal angiography - Preliminary report. Eye Ear Nose Throat Mon 55:4–11

    Google Scholar 

  • Par JC, Hodge JV, Clemett RS and Knight FH (1968) Fluorescence appearance time in retinal and choroidal vessels. Trans Ophthal Soc New Zealand 20:88–101

    Google Scholar 

  • Patz A, Flower RW, Klein ML, Orth DH, Fleischman JA and McLeod S (1976) Clinical application of Indocyanine Green angiography. Docum Ophthal Proc Ser 9:245–251

    Google Scholar 

  • Patz A (1982) Clinical and experimental studies on retinal neovascularization (XXXIX Edward Jackson Memorial Lecture). Amer J Ophthal 94:715–743

    Google Scholar 

  • Pitts DG, Cullen AP and Dayhaw-Barker P (1980) Determination of ocular threshold levels for infrared radiation cataractogenesis, DHHS (NIOSH) publ 80–121. Washington, U.S. Government Printing Office, pp 1–55

    Google Scholar 

  • Potts AM (1966) An hypothesis on macular disease. Trans Amer Acad Ophthal Otolaryng 70:1058–1062

    Google Scholar 

  • Ring HG and Fujino T (1967) Observations on the anatomy and pathology of the choroidal vasculature. Arch Ophthal 78:431–444

    Google Scholar 

  • Risco JM, Grimson BS and Johnson PT (1981) Angioarchitecture of the ciliary artery circulation of the posterior pole. Arch Ophthal 99:864–868

    Google Scholar 

  • Saari M (1977) Disciform detachment of the macula. II. Fluorescein and Indocyanine Green fluorescence angiographic findings in juvenile hemorrhagic macular choroidopathy. Acta Ophthal 55:530–538

    Google Scholar 

  • Sattler H (1976) Ueber den feineren Bau der Chorioidea des Menschen nebst Beiträgen zur pathologischen und vergleichenden Anatomie der Aderhaut. Graefes Arch Ophthal 22 (2):1–100

    Google Scholar 

  • Sautter H, Lüttewitz W and Naumann GOH (1974) Die Infrarot-Photographie in der Differentialdiagnose pigmentierter tumorverdächtiger Fundusveränderungen. Klin Mbl Augenheilk 164:597–602

    Google Scholar 

  • Schatz H, Burton TC, Yannuzzi LA and Rabb MF (1978) Subretinal Neovascularization. In: Interpretation of Fundus Fluorescein Angiography. St. Louis, Mosby, pp 440–452

    Google Scholar 

  • Shabetai R and Adolph RJ (1980) Principles of cardiac catheterization. In: Fowler NO (ed): Cardiac diagnosis and treatment, 3rd ed. Hagerstown, Haper & Row, pp 117–119

    Google Scholar 

  • Shimizu K and Ujiie K (1978) The choroid. In: Structure of Ocular Vessels. Tokyo, Igaku-Shoin Med. Pub., pp 50–92

    Google Scholar 

  • Sliney DH (1982) Optical radiation safety. Lighting Res Technol 14:142–150

    Google Scholar 

  • Sliney DH and Wolbarsht ML (1980) Safety standards and measurement techniques for high intensity light sources. Vision Res 20:1133–1141

    Google Scholar 

  • Speiser P and Bischoff P (1984) Die sogenannte Chorioretinopathia centralis serosa im Lichte der Aderhautangiographie. Klin. Mbl Augenheilk 185:378–380

    Google Scholar 

  • Spitznas M (1974) The fine structure of the chorioretinal border tissues of the adult human eye. Adv Ophthal 28:78–174

    Google Scholar 

  • The Diabetic Retinopathy Study Research Group (1978) Photocoagulation treatment of proliferative diabetic retinopathy: The second report of Diabetic Retinopathy Study findings. Ophthalmology 85:82–105

    Google Scholar 

  • Tokoro T, Hayashi K, Muto M, Asahara N, Sato K and Yoshida T (1976) Studies on choroidal circulation, Report I: Fundamental studies on the infrared absorption angiography. Jpn J Ophthal 30:173–179

    Google Scholar 

  • Torczynski E (1982) Choroid and Suprachoroid. In: Duane TD and Jaeger EA (eds): Biomedical Foundations of Ophthalmology, Vol. 1, chap. 22. Philadelphia, Harper & Row, pp 1–33

    Google Scholar 

  • Tripathi RC (1974) Fine structure of mesodermal tissues of the human eye. Trans Ophthal Soc UK 94:663–695

    Google Scholar 

  • U.S. Pharmacopeia (1980) Indocyanine Green. In: Nat. Formulary, 15th ed., Rockville, Md., United States Pharmacopeial Convention, p 399

    Google Scholar 

  • Vogt A (1919) Experimentelle Erzeugung von Katarakt durch isoliertes kurzwelliges Ultrarot, dem Rot beigemischt ist. Klin Mbl Augenheilk 63:230–231

    Google Scholar 

  • Wagner H. (1938) Pathologische und therapeutische Wirkungen des penetrierenden Ultrarot auf das Auge. Graefes Arch Ophthal 138:486–514

    Google Scholar 

  • Wald G (1949) The photochemistry of vision. Docum Ophthal 3:94–134

    Google Scholar 

  • Webb RH, Hughes GW, Timberlake GT and Mainster MA (1983) The scanning laser ophthalmoscope - summary of the first generation instrument. Invest Ophthal Vis Sci 24(suppl): 122

    Google Scholar 

  • Weinstein GW, Maumenee AE and Hyvärinen L (1971) On the pathogenesis of retinitis pigmentosa. Ophthalmologica 162:82–97

    Google Scholar 

  • Wenzel M (1786) Traité de la cataracte. Paris

  • Wheeler HO, Cranston WI and Mettzer JI (1958) Hepatic uptake and biliary excretion of Indocyanine Green in the dog. Proc Soc Exp Biol Med 99:11–14

    Google Scholar 

  • Wise GN, Dollery CT and Henkind P (1971) Retinal neovascularization. In: The Retinal Circulation. New York, Harper & Row, pp 265–278

    Google Scholar 

  • Witschel H and Font RL (1976) Hemangioma of the choroid. A clinicopathologic study of 71 cases and a review of the literature. Surv Ophthal 20:415–431

    Google Scholar 

  • Wolbarsht ML (1980) Damage to the lens from infrared. In: Wolbarsht ML and Sliney DH (eds); Ocular effects of non-ionizing radiation. Washington. The Society of Photo-Optical Instrumentation Engineers Publ., pp 121–142

    Google Scholar 

  • Wolff E (1976) Eyeball. In: Warwick R (ed): Eugene Wolff s Anatomy of the Eye and Orbit, 7th ed. London, HK Lewis & Comp, pp 30–180

    Google Scholar 

  • Wybar KC (1954) Vascular anatomy of the choroid in relation to selective localization of ocular disease. Brit J Ophthal 38:513–527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bischoff, P.M., Flower, R.W. Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue?. Doc Ophthalmol 60, 235–291 (1985). https://doi.org/10.1007/BF00157827

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00157827

Key words

Navigation