Skip to main content
Log in

Distribution of GABA immunoreactivity in the retino-recipient layer of the viper optic tectum. A light and electron microscope quantitative study

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The distribution of GABA-immunoreactivity was investigated in the principal retino-recipient layer of the optic tectum in the snake Vipera aspis. This layer, the stratum griseum et fibrosum superficiale, contained an important proportion (approximately 50%) of small GABA-immunoreactive interneurons, characterized by a voluminous invaginated nucleus surrounded by a thin rim of cytoplasm poor in organelles and occasionally showing pleiomorphic synaptic vesicles, which could also be observed in some of the dendrites that contained synaptic vesicles. In the neuropile, the GABA-immunoreactive profiles containing synaptic vesicles could be subdivided into dendrites containing synaptic vesicles and axon terminals with pleiomorphic synaptic vesicles. The dendrites containing synaptic vesicles (23.4% of all profiles containing synaptic vesicles) were postsynaptic either to optic terminals (39.2%), GABA-immunoreactive axon terminals with pleiomorphic synaptic vesicles (48.2%) or to immunonegative (S1) boutons with round synaptic vesicles (12.6%). These dendrites were presynaptic to GABA-immunoreactive (18%) neurons or immunonegative (82%) neurons. The axon terminals with pleiomorphic synaptic vesicles, which represented 47.4% of all profiles, were predominantly (99%) GABA-immunoreactive and four types could be distinguished according to cytological criteria. These axon terminals made synaptic contacts for the most part (78%) with immunonegative profiles, and more rarely (22%) with immunoreactive neurons. These data are compared to those previously obtained in the homologous structure of other vertebrate species, birds and mammals in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angaut P, Repérant J (1976) Fine structure of the optic fibre termination layers in the pigeon optic tectum: a Golgi and electron microscope study. Neuroscience 1:93–105

    Google Scholar 

  • Antal M (1991) Distribution of GABA immunoreactivity in the optic tectum of the frog: a light and electron microscopic study. Neuroscience 42:879–891

    Google Scholar 

  • Bennis M, Calas A, Geffard M, Gamrani H (1991) Distribution of GABA-immunoreactive systems in the forebrain and midbrain of the chameleon. Brain Res Bull 26:891–898

    Google Scholar 

  • Blomqvist A, Broman J (1988) Light and electron microscopic immunohistochemical demonstration of GABA-immunoreactive astrocytes in the brainstem of the rat. J Neurocytol 17:629–637

    Google Scholar 

  • Bloomfield SA, Sherman SM (1989) Dendritic current flow in relay cells and interneurons of the cat's lateral geniculate nucleus. Proc Natl Acad Sci USA 86:3911–3914

    Google Scholar 

  • Buijs RM, Vulpen EHS van, Geffard M (1987) Ultrastructural localization of GABA in the supraoptic nucleus and neural lobe. Neuroscience 20:347–355

    Google Scholar 

  • Caruso DM, Owczarzak M T, Goebel DJ, Hazlett JC, Pourcho RG (1989) GABA-immunoreactivity in ganglion cells of the rat retina. Brain Res 476:129–134

    Google Scholar 

  • Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscopic study. Brain Res 9:268–287

    Google Scholar 

  • Dacey DM, Ulinski P S (1986a) Optic tectum of the eastern garter snake, Thamnophis sirtalis. III. Morphology of intrinsic neurons. J Comp Neurol 245:283–300

    Google Scholar 

  • Dacey DM, Ulinski P S (1986b) Optic tectum of the eastern garter snake, Thamnophis sirtalis. V. Morphology of brainstem afferents and general discussion. J Comp Neurol 245:423–453

    Google Scholar 

  • Davanger S, Ottersen OP, Storm-Mathisen J (1991) Glutamate, GABA, and glycine in the human retina: an immunocytochemical investigation. J Comp Neurol 311:483–494

    Google Scholar 

  • Decavel C, Dubourg P, Geffard M, Calas A (1989) Simultaneous immunogold labeling of GABAergic terminals and vasopressin-containing neurons in the rat paraventricular nucleus. Cell Tissue Res 225:77–80

    Google Scholar 

  • Domenici L, Waldvogel HJ, Matute C, Streit P (1988) Distribution of GABA-like immunoreactivity in the pigeon brain. Neuroscience 25:931–950

    Google Scholar 

  • Enna SJ, Gallagher JP (1983) Biochemical and electrophysiological characteristics of mammalian GABA receptors. Int Rev Neurobiol 24:181–212

    Google Scholar 

  • Famiglietti EV Jr, Peters A (1972) The synaptic glomerulus and the intrinsic neuron in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 144:285–334

    Google Scholar 

  • Fitzpatrick D, Penney G R, Schmechel D E (1984) Glutamic acid decarboxylase-immunoreactive neurons and terminals in the lateral geniculate nucleus of the cat. J Neurosci 4:1809–1829

    Google Scholar 

  • Franzoni MF, Morino P (1989) The distribution of GABA-like immunoreactive neurons in the brain of the newt, Triturus cristatus carnifex, and the green frog, Rana esculenta. Cell Tissue Res 255: 155–166

    Google Scholar 

  • Gábriel R, Straznicky C, Wye-Dvorak J (1992) GABA-like immunoreactive neurons in the retina of Bufo inarinus: evidence for the presence of GABA-containing ganglion cells. Brain Res 571:175–179

    Google Scholar 

  • Gamrani H, Onteniente B, Seguela P, Geffard M, Calas A (1986) Gamma-aminobutyric acid-immunoreactivity in the rat hippocampus. A light and electron microscopic study with anti-GABA antibodies. Brain Res 364:30–38

    Google Scholar 

  • Gayoso MJ, Bullon MM, Abia J, Al-Majdalawi A (1989) GABA-like immunoreactivity in displaced amacrine and ganglion cells in the cat retina (abstr). Eur Neurosci [Suppl 2]: 78

  • Giolli RA, Petterson GM, Riback CE, McDonald HM, Blanks RHI, Fallen JH (1985) Gabaergic neurons comprise a major cell type in rodent visual relay nuclei: an immunocytochemical study of pretectal and accessory optic nuclei. Exp Brain Res 61:194–203

    Google Scholar 

  • ]Gläsener G, Himstedt W, Weiler R, Matute C (1988) Putative neurotransmitters in the retinae of three urodele species (Triturus alpestris. Salamandra salamandra, Pleurodeks waltli). Cell Tissue Res 252:317–328

    Google Scholar 

  • Granda RH, Crossland WJ (1989) GABA-like immunoreactivity of neurons in the chicken diencephalon and mesencephalon. J Comp Neurol 287:455–469

    Google Scholar 

  • Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscopic study. J Anat 93:420–433

    Google Scholar 

  • Guillery RW (1969) The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Z Zellforsch Mikrosk Anat 96:211–227

    Google Scholar 

  • Harting JK, Huerta MF, Hashikawa T, Weber JT, Lieshout DP van (1988) Neuroanatomical studies of the nigrotectal projection in the cat. J Comp Neurol 278:615–663

    Google Scholar 

  • Hendrickson AE, Ogren MP, Vaughn JE, Barber RP, Wu JU (1983) Light and electron microscopic immunocytochemical localization of glutamic acid decarboxylase in monkey geniculate complex: evidence for GABAergic neurons and synapses. Neuroscience 2:1245–1262

    Google Scholar 

  • Houser CR, Lee M, Vaughn JE (1983) Immunocytochemical localization of glutamic acid decarboxylase in normal and deafferented superior colliculus: evidence for reorganization of gamma-aminobutyric acid synapses. J Neurosci 3:2030–2042

    Google Scholar 

  • Hunt SP, Künzle H (1976) Selective uptake and transport of label within three identified neuronal systems after injection of 3H-GABA into the pigeon optic tectum: an autoradiographic and Golgi study. J Comp Neurol 170:173–190

    Google Scholar 

  • Koontz MA, Hendrickson AE, Ryan MK (1989) GABA-immunoreactive synaptic plexus in the nerve fiber layer of primate retina. Vis Neurosci 5:17–28

    Google Scholar 

  • Laemle LK (1981) A Golgi study of cellular morphology in the superficial layers of superior colliculus in man, Saimiri, and Macaca. J Hirnforsch 22:253–263

    Google Scholar 

  • Langer TP, Lund RD (1974) The upper layers of the superior colliculus of the rat. A Golgi study. J Comp Neurol 158: 405–43

    Google Scholar 

  • Lund RD (1969) Synaptic patterns of the superficial layers of the superior colliculus of the rat. J Comp Neurol 135:179–207

    Google Scholar 

  • Lund RD (1972) Synaptic patterns in the superficial layers of the superior colliculus of the monkey (Macaca mulatto). Exp Brain Res 15:194–211

    Google Scholar 

  • Mayhew TM (1979) Stereological approach to the study of synapse morphometry with particular regard to estimating number in a volume and on a surface. J Neurocytol 8:121–138

    Google Scholar 

  • Médina M, Repérant J, Dufour S, Le Belle N, Miceli D (1994) The distribution of GABA-immunoreactive neurons in the brain of the silver eel (Anguilla anguilla). Anat Embryol 189:25–39

    Google Scholar 

  • Mize RR (1988) Immunocytochemical localization of gammaaminobutyric acid (GABA) in the cat superior colliculus. J Comp Neurol 276:169–187

    Google Scholar 

  • Mize RR (1992) The organization of GABAergic neurons in the mammalian colliculus. Prog Brain Res 90:219–248

    Google Scholar 

  • Mize RR, Spencer RF, Sterling P (1981) Neurons and glia in cat superior colliculus accumulate [3H] gamma-aminobutyric acid (GABA). J Comp Neurol 202:385–396

    Google Scholar 

  • Mize RR, Spencer RF, Sterling P (1982) Two types of GABA-accumulating neuron in the superficial gray layer of the cat superior colliculus. J Comp Neurol 206:180–192

    Google Scholar 

  • Mize RR, Jeon CJ, Hamada OL, Spencer RF (1991) Organization of neurons labeled by antibodies to gamma-aminobutyric acid (GABA) in the superior colliculus of the rhesus monkey. Vis Neurosci 6:75–92

    Google Scholar 

  • Mize RR, Whitworth H, Nunes Cardozo B, Want J van der (1994) Ultrastructural organization of GABA in the rabbit superior colliculus revealed by quantitative postembedding immunocytochemistry. J Comp Neurol 341:273–287

    Google Scholar 

  • Montero VM (1986) Localization of γ-aminobutyric acid (GABA) in type 3 cells and demonstration of their source to F2 terminals in the cat lateral geniculate nucleus: a Golgi-electron-microscopic GABA-immunocytochemical study. J Comp Neurol 254:228–245

    Google Scholar 

  • Montero VM, Singer W (1985) Ultrastructural identification of somata and neural processes immunoreactive to antibodies against glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the cat. Exp Brain Res 59:151–165

    Google Scholar 

  • Montero VM, Zempel J (1985) Evidence for two types of GABA-containing interneurons in the A-laminae of the cat lateral geniculate nucleus. A double-label HRP and GABA-immunocytochemical study. Exp Brain Res 60:603–609

    Google Scholar 

  • Montero VM, Zempel J (1986) The proportion and size of GABA-immunoreactive neurons in the magnocellular and parvocellular layers of the lateral geniculate nucleus of the rhesus monkey. Exp Brain Res 62:215–223

    Google Scholar 

  • Mosinger JL, Yazulla S, Studholme KM (1986) GABA-like immunoreactivity in the vertebrate retina: a species comparison. Exp Eye Res 42:631–644

    Google Scholar 

  • Mugnaini E, Oertel W H (1985) An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunocytochemistry. In: Björklund AT, Hökfelt TH (eds) Handbook of chemical neuroanatomy, vol 4. Elsevier, Amsterdam, pp 436–608

    Google Scholar 

  • Northcutt RG (1984) Anatomical organization of the optic tectum in reptiles. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 547–600

    Google Scholar 

  • Nunes Cardozo B, Want JJL van der (1990) Ultrastructural organization of the retino-pretecto-olivary pathway in the rabbit: a combined WGA-HRP tracing and GABA immunocytochemical study. J Comp Neurol 291:313–327

    Google Scholar 

  • Ohara PT, Lieberman AR, Hunt SP, Wu JY (1983) Neural elements containing glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the rat: immunohistochemical studies by light and electron microscopy. Neuroscience 8:189–211

    Google Scholar 

  • Ottersen OP (1989a) Postembedding immunogold labelling of fixed glutamate: an electron microscopic analysis of the relationship between gold particle density and antigen concentration. J Chem Neuroanat 2:57–66

    Google Scholar 

  • Ottersen OP (1989b) Quantitative electron microscopic immunocytochemistry of neuroactive amino acids. Anat Embryol 180:1–15

    Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1984a) Neurons containing or accumulating transmitter amino acids. In: Björklund A, Hökfelt T, Kuhar M J (eds) Handbook of chemical neuroanatomy, vol 9. Elsevier, Amsterdam, pp 141–246

    Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1984b) Glutamateand GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229:374–392

    Google Scholar 

  • Palay SL, Chan-Palay V (1975) A guide to the synaptic analysis of the neuropil. In: Spring Harbor Symposia on quantitative Biology. The synapse. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 1–16

    Google Scholar 

  • Pourcho RG (1980) Uptake of [3H] glycine and [3H] GABA by amacrine cells in the cat retina. Brain Res 198:333–346

    Google Scholar 

  • Repérant J (1973) Les voies et les centres visuels primaires chez la vipére (Vipera aspis). Arch Anat Microsc Morphol Exp 62:323–352

    Google Scholar 

  • Repérant J (1978) Organisation anatomique du systéme visuel des vertébr'es. Approche évolutive. Thesis, Paris

  • Repérant J, Rio JP, Ward R, Herguéta S, Miceli D, Lemire M (1992) Comparative analysis of the primary visual system of reptiles. In: Gans C, Ulinski P S (eds) Biology of the reptilia. Sensorimotor integration, vol 17. University of Chicago Press, Chicago, pp 175–240

    Google Scholar 

  • Roberts E (1954) γ-aminobutyric acid (GABA): from discovery to visualization of GABAergic neurons in the vertebrate nervous system. In: Bowery NG (ed) Actions and interactions of GABA and benzodiazepines. Raven Press, New York, pp 1–25

    Google Scholar 

  • Seguela P, Geffard M, Buijs RM, Le Moal M (1984) Antibodies against γ-aminobutyric acid: specificity studies and immunocytochemical results. Proc Natl Acad Sci USA 81:3888–3892

    Google Scholar 

  • Seguela P, Gamrani H, Geffard M, Calas A, Le Moal M (1985) Ultrastructural immunocytochemistry of gamma-amino-butyrate in the cerebral and cerebellar cortex of the cat. Neuroscience 16:865–874

    Google Scholar 

  • Sillito A M (1992) GABA-mediated inhibitory processes in the function of the geniculo-striate system. Prog Brain Res 90:349–384

    Google Scholar 

  • Sterling P (1971) Receptive fields and synaptic organization of the superficial gray layer of the cat superior colliculus. Vision Res 11:309–328

    Google Scholar 

  • Sterling P, Davis T L (1980) Neurons in the cat lateral geniculate nucleus that concentrate exogenous [3H]-gamma-aminobutyric acid (GABA). J Comp Neurol 192:737–749

    Google Scholar 

  • Sternberger LA, Hardy PH Jr, Cuculis J, Meyer HG (1970) The unlabeled antibody enzyme method of immunocytochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antiperoxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–334

    Google Scholar 

  • Streit P, Knecht E, Reubi J C, Hunt S P, Cuénod M (1978) GABA-specific presynaptic dendrites in pigeon optic tectum: a high-resolution autoradiographic study. Brain Res 149:204–210

    Google Scholar 

  • Tigges M, Tigges J (1975) Presynaptic dendrite cells and two other classes of neurons in the superficial layers of the superior colliculus of the chimpanzee. Cell Tissue Res 162:279–295

    Google Scholar 

  • Uhlrich DJ, Cucchiaro JB (1992) GABAergic circuits in the lateral geniculate nucleus of the cat. Prog Brain Res 90:171–192

    Google Scholar 

  • Ulinski PS, Dacey DM, Sereno MI (1992) Optic tectum. In: Gans C, Ulinski P S (eds) Biology of the reptilia. Sensorimotor integration, vol 17. University of Chicago Press, Chicago, pp 241–366

    Google Scholar 

  • Valverde F (1973) The neuropil in superficial layers of the superior colliculus of the mouse. Z Anat Entwicklungsgesch 142:117–147

    Google Scholar 

  • Verney C, Alvarez C, Geffard M, Berger B (1990) Ultrastructural double-labeling study of dopamine terminals and GABA-containing neurons in the rat anteromedial cerebral cortex. Eur J Neurosci 2:960–972

    Google Scholar 

  • Want JJL van der, Nunes Cardozo JJ, Togt C van der (1992) GABAergic neurons and circuits in the pretectal nuclei and the accessory optic system of mammals. Prog Brain Res 90:283–305

    Google Scholar 

  • Weibel ER (1979) Stereological methods. In: Practical methods for biological morphometry, vol 1. Academic Press, London, pp 1–416

    Google Scholar 

  • Yu ACH, Chan PH, Fishman RA (1986) Effects of arachidonic acid on glutamate and γ-aminobutyric acid uptake in primary cultures on rat cerebral cortical astrocytes and neurons. J Neurochem 47:1181–1189

    Google Scholar 

  • Yu BCY, Watt CB, Lam DMK, Fry KR (1988) GABAergic ganglion cells in the rabbit retina. Brain Res 439:376–382

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rio, J.P., Repérant, J., Herbin, M. et al. Distribution of GABA immunoreactivity in the retino-recipient layer of the viper optic tectum. A light and electron microscope quantitative study. Anat Embryol 191, 251–265 (1995). https://doi.org/10.1007/BF00187824

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187824

Key words

Navigation