Skip to main content
Log in

Prospects for the genetics of human longevity

  • Review Article
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Longevity varies between and within species. The existence of species-specific limit to human life-span and its partial heritability indicate the existence of genetic factors that influence the ageing process. Insight into the nature of these genetic factors is provided by evolutionary studies, notably the disposable soma theory, which suggests a central role of energy metabolism in determining life-span. Energy is important in two ways. First, the disposable soma theory indicates that the optimum energy investment in cell maintenance and repair processes will be tuned through natural selection to provide adequate, but not excessive, protection against random molecular damages (e.g. to DNA, proteins). All that is required is that the organism remains in a sound condition through its natural expectation of life in the wild environment, where accidents are the predominant cause of mortality. Secondly, energy is implicated because of the intrinsic vulnerability of mitochondria to damage that may interfere with the normal supply of energy to the cell via the oxidative phosphorylation pathways. Oxidative phosphorylation produces ATP, and as a by-product also produces highly reactive oxygen radicals that can damage many cell structures, including the mitochondria themselves. Several lines of evidence link, on the one hand, oxidative damage to cell ageing, and on the other hand, energy-dependent antioxidant defences to the preservation of cellular homeostasis, and hence, longevity. Models of cellular ageing in vitro allow direct investigation of mechanisms, such as oxidative damage, that contribute to limiting human life-span. The genetic substratum of inter-individual differences in longevity may be unraveled by a two-pronged reverse genetics approach: sibling pair analysis applied to nonagenarian and centenarian siblings, combined with association studies of centenarians, may lead to the identification of genetic influences upon human longevity. These studies have become practicable thanks to recent progress in human genome mapping, especially to the development of microsatellite markers and the integration of genetic and physical maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott MH, Murphy EA, Bolling DR, Abbey H (1974) The familial component in longevity, a study of the offspring of nonagenarians II. Preliminary analysis of the completed study. Johns Hopkins Med J 134:1–16

    Google Scholar 

  • Adelman R, Saul RL, Ames BN (1988) Oxidation damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci USA 85:2706–2708

    Google Scholar 

  • Allard M (1991) Á la recherché du secret des centenaires. Le cherche midi éditeur, Paris

    Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, De Bruijn MHL, Coulson AR et al, (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Google Scholar 

  • Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4:249–333

    Google Scholar 

  • Baker KP, Schatz G (1991) Mitochondrial proteins essential for viability mediate protein import into yeast mitochondria. Nature 349:205–208

    Google Scholar 

  • Belcour L, Begel O, Mosse MO, Vierny C (1981) Mitochondrial DNA amplification in senescent cultures of Podospora anserina. Curr Genet 3:13–21

    Google Scholar 

  • Beverton RJ (1987) Longevity in fish: some ecological and evolutionary considerations. In: Woodhead AD, Thompson KH (eds) Evolution of senescence. A comparative approach. Plenum, New York, pp 145–160

    Google Scholar 

  • Bishop DT, Williamson JA (1990) The power of identity-by-state methods for linkage analysis. Am J Hum Genet 46:254–265

    Google Scholar 

  • Blackwelder WC, Elston RC (1985) A comparison of sib-pair linkage tests for disease susceptibility loci. Genet Epidemiol 2:85–97

    Google Scholar 

  • Boehnke M (1990) Sample-size guidelines for linkage analysis of a dominant locus for a quantitative trait by the method of lod scores. Am J Hum Genet 47:218–227

    Google Scholar 

  • Calder WA (1984) Size, function and life history. Harvard University Press, Cambridge, Mass

    Google Scholar 

  • Calder WA (1985) The comparative biology of longevity and lifetime energetics. Exp Gerontol 20:161–170

    Google Scholar 

  • Chumakov I, Rigault P, Guillou S, Ougen P, Billault A, Guasconi G, Gervy P, Le Gall I, Soularue P, Grinas P, Bougueleret L, Bellanée-Chantelot C, Lacroix B, Barillot E, Gesnouin P, Pook S, Vayssex G, Frelat G, Schmitz A, Sambucy JL, Bosch A, Estivill X, Weissenbach J, Vignal A, Riethman H, Cox D, Patterson D, Gardiner K, Masahira H, Sakaki Y, Ichikawa H, Ohsi M, Le Paslier D, Heilig R, Antonarakis S, Cohen D (1992) Continuum of overlapping clones spanning the entire human chromosome 21q. Nature 359:380–386

    Google Scholar 

  • Clayton DA (1984) Transcription of the mammalian mitochondrial genome. Annu Rev Biochem 53:573–594

    Google Scholar 

  • Clayton DA, Doda JN, Friedberg EC (1974) The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci USA 71:2777–2781

    Google Scholar 

  • Clerget-Darpoux F, Bonaiti-Pellié C (1992) Strategies based on marker information for the study of human diseases. Ann Hum Genet 56:147–155

    Google Scholar 

  • Corbisier P, Remacle J (1990) Involvement of mitochondria in cell degeneration. Eur J Cell Biol 51:173–182

    Google Scholar 

  • Corral-Debrinski M, Shoffner JM, Lott MT, Wallace DC (1992) Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res 275:169–180

    Google Scholar 

  • Cortopassi GA, Arnheim N (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 18:6927–6933

    Google Scholar 

  • Cortopassi GA, Shibata D, Soong NW, Arnheim N (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA 89:7370–7374

    Google Scholar 

  • Cox NJ, Bell GI (1989) Disease associations, chance, artifact or susceptibility genes? Diabetes 38:947–950

    Google Scholar 

  • Cristofalo VJ, Doggett DL, Brooks-Frederich KM, Phillips PD (1989) Growth factors as probes of cell aging. Exp Gerontol 24:367–374

    Google Scholar 

  • Demenais F, Lathrop GM (1993) Use of the regressive models in linkage analysis of quantitative traits. Genet Epidemio (in press)

  • Else PL, Hulbert AJ (1981) Comparison of the “mammal machine” and the “reptile machine”: energy production. Am J Physiol 204:R3-R9

    Google Scholar 

  • Evans MJ, Scarpulla RC (1990) NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev 4:1023–1034

    Google Scholar 

  • Feingold N (1972) Phénomènes d'association dans une population. Nouv Rev Fr Hematol 12:471–475

    Google Scholar 

  • Finch CE (1990) Longevity, senescence and the genome. University of Chicago Press, Chicago

    Google Scholar 

  • Fleming JE, Miquel J, Cottrell SF, Yengoyan LS, Economos AC (1982) Is cell ageing caused by respiratory-dependent injury to the mitochondrial genome? Gerontology 28:44–53

    Google Scholar 

  • Francis AA, Lee WH, Francis AA, Lee WH, Regan JD (1981) The relationship of DNA excision repair of ultraviolet-induced lesions to the maximum life-span of mammals. Mech Ageing Dev 16:181–189

    Google Scholar 

  • Fridovitch I (1975) Superoxide dismutases. Annu Rev Biochem 44:147–159

    Google Scholar 

  • Glueck CG, Gartside P, Fallat W, Sielski J, Steiner PM (1976) Longevity syndromes: familial hypobeta and familial hyperalpha lipoproteinemia. J Lab Clin Med 88:941–956

    Google Scholar 

  • Goldstein S (1990) Replicative senescence: the human fibroblast comes of age. Science 249:1129–1133

    Google Scholar 

  • Greenberg DA (1993) Linkage analysis of “necessary” disease loci versus “susceptibility” loci. Am J Hum Genet 52:135–143

    Google Scholar 

  • Grube K, Bürkle A (1992) Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span. Proc Natl Acad Sci USA 89:11759–11763

    Google Scholar 

  • Hara E, Tsurui H, Shinozaki A, Nakada S, Oda K (1991) Cooperative effet of antisense-Rb and antisense-p53 oligomers on the extension of life-span in human diploid fibroblasts. Biochem Biophys Res Commun 179:528–534

    Google Scholar 

  • Harding AE (1991) Neurological disease and mitochondrial genes. Trends Neurosci 14:132–138

    Google Scholar 

  • Harley CB, Fuchter AB, Greider CW (1990) Telomeres shorten during aging of human fibroblasts. Nature 345:458–460

    Google Scholar 

  • Harman D (1972) The biological clock: the mitochondria? J Am Geriatr Soc 20:145–147

    Google Scholar 

  • Harman D (1991) The aging process: major risk factor for disease and death. Proc Natl Acad Sci USA 88:5360–5363

    Google Scholar 

  • Hart R, Setlow RB (1974) Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc Natl Acad Sci USA 71:2169–2173

    Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Hayakawa M, Torii K, Sugyiama S, Tanaka M, Ozawa T (1991) Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun 179:1023–1029

    Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid strains. Exp Cell Res 25:585–621

    Google Scholar 

  • Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

    Google Scholar 

  • Holliday R (1990) The limited proliferation of cultured human diploid cells: regulation or senescence? J Gerontol 45:B36–41

    Google Scholar 

  • Holt IJ, Harding JA, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331:717–719

    Google Scholar 

  • Hulbert AJ, Else PL (1981) Comparison of the “mammal machine” and the “reptile machine”: energy use and thyroid activity. Am J Physiol 241:R350-R356

    Google Scholar 

  • Ikebe S, Tanaka M, Ohno K, Sato W, Hattori K, Kondo T, Mizuno Y, Ozawa T (1990) Increase of deleted mitochondrial DNA in the striatum in Parkinson's disease and senescence. Biochem Biophys Res Commun 170:1044–1048

    Google Scholar 

  • Jarvik LF, Falek A, Kallman FJ, Lorge I (1960) Survival trends in a senescent twin population. Am J Hum Genet 12:170–179

    Google Scholar 

  • Jeunemaître X, Soubrier F, Kotelevtsev YV, Lifton RP, Willimas CS, Charru A, Hint SC, Hopkins PN, Williams RR, Lalouel JM, Corvol P (1992) Molecular basis of human hypertension: role of angiotensinogen. Cell 71:169–180

    Google Scholar 

  • Johns DR, Drachman DB, Hurko O (1989) Identical mitochondrial DNA deletion in blood and muscle. Lancet 1:393–394

    Google Scholar 

  • Johnson TE (1990) Increased lifespan of Age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science 249:908–912

    Google Scholar 

  • Julier C, Hyer NR, Davies J, Merlin F, Soularue P, Briant L, Cathelineau G, Deschamps I, Rotter JI, Froguel P, Boutard C, Bell JI, Lathrop GM (1991) Insulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature 354:155–159

    Google Scholar 

  • Kadenbach B, Müller-Höcker J (1990) Mutations of mitochondrial DNA and human death. Natur Wissch 77:221–225

    Google Scholar 

  • Kirkwood TBL (1981) Repair and its evolution: survival versus reproduction. In: Townsend CR, Calow P (eds) Physiological ecology: an evolutionary approach to resource use. Blackwell Scientific Publications, Oxford, pp 165–189

    Google Scholar 

  • Kirkwood TBL (1991) Genetic basis of limited cell proliferation. Mutat Res 256:323–328

    Google Scholar 

  • Kirkwood TBL (1992) Comparative life-spans of species: why do species have the life-spans they do? Am J Clin Nutr 55:1191–1195

    Google Scholar 

  • Kirkwood TBL, Franceschi C (1992) Is aging as complex as it would appear? New perspectives in aging research. Ann NY Acad Sci 663:412–417

    Google Scholar 

  • Kirkwood TBL, Rose MR (1991) Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond [Biol] 332:15–24

    Google Scholar 

  • Lange K (1986) The affected sib pair method using identity by state relations. Am J Hum Genet 39:148–150

    Google Scholar 

  • Lestienne P (1992) Mitochondrial DNA mutations in human diseases: a review. Biochimie 74:123–130

    Google Scholar 

  • Linnane AW, Baumer A, Maxwell RJ, Preston H, Zhank C, Marzuki S (1990) Mitochondrial gene mutation: the ageing process and degenerative diseases. Biochem Int 22:1067–1076

    Google Scholar 

  • Lusis AJ (1988) Genetic factors affecting blood lipoproteins: the candidate gene approach. J Lipid Res 29:397–429

    Google Scholar 

  • Macieira-Coelho A, Nordenksjöld B (1990) Cancer and aging. CRC Press, Boca Raton, Fla

    Google Scholar 

  • Maier JAM, Voulalas P, Roeder D, Maciag T (1990) Extension of the life-span of human endothelial cells by interleukin-1α antisense oligomer. Science 249:1570–1574

    Google Scholar 

  • Martin GM, Sprague C, Epstein C (1970) Replicative life-span of cultivated human cells: effects of donor's age, tissue and genotype. Lab Invest 23:86–91

    Google Scholar 

  • Medvedev ZA (1990) An attempt at a rational classification of theories of ageing. Biol Rev 65:375–398

    Google Scholar 

  • Mignotte B, Larcher JC, Zheng DQ, Esnault C, Coulaud D, Feunteun J (1990) SV40 induced cellular immortalization: phenotypic changes associated with the loss of proliferative capacity in a conditionally immortalized cell line. Oncogene 5:1529–1533

    Google Scholar 

  • Murphy BJ, Robin ED, Tapper DP, Wong RJ, Clayton DA (1984) Hypoxic coordinate regulation of mitochondrial enzymes in mammalian cells. Science 223:707–709

    Google Scholar 

  • NIH/CEPH Collaborative Mapping Group (1992) A comprehensive genetic linkage map of the human genome. Science 258:67–86

    Google Scholar 

  • Niwa Y, Ishimoto K, Kanoh T (1990) Induction of superoxide dismutase in leukocytes by paraquat: correlation with age and possible predictor of longevity. Blood 76:835–841

    Google Scholar 

  • Nuell MJ, Stewart DA, Walker L, Friedman V, Wood CM, Owens FA, Smith JR, Schneider EL, Dell'Orco RT, Lumpkin CD, Danner DB, McClung JK (1991) Prohibitin, an evolutionarily conserved intracellular protein that blocks DNA synthesis in normal fibroblasts and HeLa cells. Mol Cell Biol 11:1372–1381

    Google Scholar 

  • Olshansky SJ, Carnes BA, Cassel C (1990) In search of Methuselah: estimating the upper limits to human longevity. Science 250:634–640

    Google Scholar 

  • Ozawa T, Yoneda M, Tanaka M, Ohno K, Sato W, Suzuki H, Nashikimi M et al (1988) Maternal inheritance of mitochondrial DNA in a family with mitochondrial myopathy. Biochem Biophys Res Commun 154:1240–1247

    Google Scholar 

  • Oziewacz HD (1990) Molecular analysis of ageing processes in fungi. Mutat Res 237:1–8

    Google Scholar 

  • Pearl R, Pearl de W (1934) The ancestry of the long-lived. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Pereira-Smith OM, Smith JR (1983) Evidence for the recessive nature of cellular immortality. Science 221:962–966

    Google Scholar 

  • Pereira-Smith OM, Smith JR (1988) Genetic analysis of indefinite division in human cells: identification of four complementation groups. Proc Natl Acad Sci USA 85:6042–6046

    Google Scholar 

  • Proust J, Moulias R, Fumeron F, Bekkhoucha F, Busson M, Schmidt M, Hors J (1982) HLA and longevity. Tissue Antigens 19:168–173

    Google Scholar 

  • Richter C, Kass GEN (1991) Oxidative stress in mitochondria: its relationship to cellular Ca++ homeostasis, cell death, proliferation, and differentiation. Chem Biol Interact 77:1–23

    Google Scholar 

  • Richter CH (1988) Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett 241:1–5

    Google Scholar 

  • Richter CH, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467

    Google Scholar 

  • Risch N (1990) Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs. Am J Hum Genet 46:242–253

    Google Scholar 

  • Röhme D (1981) Evidence for a relationship between longevity of mammalian species and life-spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc Natl Acad Sci USA 78:5009–5013

    Google Scholar 

  • Rose MR (1984) Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38:1004–1010

    Google Scholar 

  • Sacher GA (1977) Life table modification and life prolongation. In: Finch CE, Hayflick L (eds) Handbook of the biology of aging. Van Nostrand, New York, pp 582–638

    Google Scholar 

  • Scholte HR (1988) The biochemical basis of mitochondrial diseases. J Bioenerg Biomembr 20:161–191

    Google Scholar 

  • Schraufstatter I, Hinshaw D, Hyslop P, Spragg R, Cochrane C (1986) Oxidant injury of cells: DNA strand breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest 77:1312–1320

    Google Scholar 

  • Seboun E, Robinson MA, Doolittle TH, Ciulla TA, Kindt TJ, Hauser SL (1989) A susceptibility locus for multiple sclerosis is linked to the T cell receptor β chain complex. Cell 57:1095–1100

    Google Scholar 

  • Seshadri T, Campisi J (1990) Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science 247:205–209

    Google Scholar 

  • Shay JW, Pereira-Smith OM, Wright WE (1991) A role for both Rb and p53 in the regulation of human cellular senescence. Exp Cell Res 196:33–39

    Google Scholar 

  • Söllner T, Rassow J, Wiedmann M, Schlossmann J, Keil P, Neupert W, Pfanner N (1992) Mapping of the protein import machinery in the mitochondrial outer membrane by crosslinking of translocation intermediates. Nature 355:84–87

    Google Scholar 

  • Soong NW, Hinton DR, Cortopassi GA, Arnheim N (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nature Genet 2:318–323

    Google Scholar 

  • Stein GH, Beeson M, Gordon I (1990) Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249:666–669

    Google Scholar 

  • Strehler BL (1977) Time, cells and aging, 2nd edn. Academic Press, New York

    Google Scholar 

  • Suarez BK, Rice JP, Reich T (1978) The generalized sib pair IBD distribution: its use in the detection of linkage. Ann Hum Genet 42:87–94

    Google Scholar 

  • Takata H, Ishii T, Suzuki M, Sekiguchi S, Iri H (1987) Influence of major histocompatibility complex region genes on human longevity among Okinawan-Japanese centenarians and nonagenarians. Lancet II:824–826

    Google Scholar 

  • Thomson G (1986) Determining the mode of inheritance of RFLP-associated diseases using the affected sib-pair method. Am J Hum Genet 39:207–221

    Google Scholar 

  • Tzagoloff A, Myers AM (1986) Genetics of mitochondrial biogenesis. Annu Rev Biochem 55:249–285

    Google Scholar 

  • Uitterlinden AG, Slagboom PE, Knook DL, Vijg J (1989) Two-dimensional DNA fingerprinting of human individuals. Proc Natl Acad Sci USA 86:2742–2746

    Google Scholar 

  • Vaziri H, Schächter F, Uchida I, Wei L, Zhu X, Effros R, Cohen D, Harley CB (1993) Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet (in press)

  • Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256:628–632

    Google Scholar 

  • Wang E (1989) Stalin, a nonproliferation-specific protein, is associated with the nuclear envelope and is heterogeneously distributed in cells leaving quiescent state. J Cell Physiol 140:418–426

    Google Scholar 

  • Wange E, Tomaszewski G (1991) Granular presence of terminin is the marker to distinguish between the senescent and quiescent states. J Cell Physiol 147:514–522

    Google Scholar 

  • Weeks DE, Lange K (1988) The affected-pedigree-member method of linkage analysis. Am J Hum Genet 42:315–326

    Google Scholar 

  • Weissenbach J, Gyapay G, Dib C, Vignal A, Morisette J, Millaseau P, Vayssex G, Lathrop GM (1992) A second generation linkage map of the human genome. Nature 359:794–801

    Google Scholar 

  • Wicking C, Williamson B (1991) From linked marker to gene. Trends Genet 7:288–293

    Google Scholar 

  • Wright RM, Horrum MA, Cummings DJ (1982) Are mitochondrial structural genes selectively amplified during senescence in Podospora anserina? Cell 29:505–515

    Google Scholar 

  • Wright WE, Pereira-Smith OM, Shay JW (1989) Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol 9:3088–3092

    Google Scholar 

  • Yen Tch, Su JH, King KL, Wei YH (1991) Ageing associated 5 kb deletion in human liver mitochondrial DNA. Biochem Biophys Res Commun 178:124–131

    Google Scholar 

  • Yuzaki M, Ohkoshi N, Kanazawa L, Kagawa Y, Ohta S (1989) Multiple deletions in mitochondrial DNA at direct repeats of non-D-loop regions in cases of familial mitochondrial myopathy. Biochem Biophys Res Commun 164:1352–1357

    Google Scholar 

  • Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S, DiDonato S (1989) An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 339:309–311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schächter, F., Cohen, D. & Kirkwood, T. Prospects for the genetics of human longevity. Hum Genet 91, 519–526 (1993). https://doi.org/10.1007/BF00205074

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00205074

Keywords

Navigation