Skip to main content
Log in

Alimentary responses to forebrain stimulation in monkeys

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Electrical stimulation of 5885 loci in the forebrains of 15 male rhesus monkeys (M. mulatta) elicited the alimentary responses of food intake, water intake, food ejection, and vomiting. Intake of non-food objects was also recorded. The following results were obtained. Food intake was evoked from preoptic region, substantia innominata, lateral, dorsal and posterior hypothalamus, tegmentum, medial hypothalamus, midline thalamus, central grey, anterior internal capsule, putamen, and stria terminalis. Non-food intake was evoked from most of these structures and, additionally, from the anterior cingulate region. Water intake was elicited from the anterior cingulate region, anterior internal capsule, putamen, substantia innominata, lateral, dorsal and posterior hypothalamus, tegmentum, substantia nigra and medial hypothalamus. Food ejection and vomiting were obtained from the preoptic region and medial hypothalamus (ejection only), olfactory tubercle, amygdala, septum, fornix, and nucleus ventralis anterior. Quantitative measures of response probability, response distribution and threshold as well as behavioral analysis indicated that no simple anatomical or behavioral scheme could satisfactorily organize these data. Alimentary mechanisms appear to be diverse, nonunitary, and complex.

Major contributions to all alimentary responses were obtained from extrahypothalamic tissue. Especially well documented were the relationship between the anterior cingulate gyrus and drinking and the nuc. ventralis anterior and vomiting. The putamen also contributed consistently to all alimentary responses. Within the hypothalamus, alimentary responses were elicited from the paraventricular zone but not from the ventromedial nucleus proper. The lateral hypothalamus, although an effective locus for evoked feeding, was not the most effective zone as measured by response probability, distribution, and threshold.

A new scheme of organization of alimentary mechanisms is proposed which accounts for the increased anatomical and behavioral complexity documented in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afifi, A., and W.W. Kaelber: Efferent connections of the substantia nigra in the cat. Exp. Neurol. 11, 474–480 (1965).

    Article  CAS  PubMed  Google Scholar 

  2. Akerman, B., B. Andersson, E. Fabricius and L. Svensson: Observations on the central regulation of body temperature and of food and water intake in the pigeon (Columba livia). Acta physiol. scand. 50, 328–336 (1960).

    Article  CAS  PubMed  Google Scholar 

  3. Anand, B.K.: Nervous regulation of food intake. Physiol. Rev. 41, 677–708 (1961).

    CAS  PubMed  Google Scholar 

  4. —, and J.R. Brobeck: Hypothalamic control of food intake in rats and cats. Yale J. Biol. Med. 24, 123–139 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. —: Localization of a “feeding center” in the hypothalamus of the rat. Soc. exp. Biol. Med. 77, 323–324 (1951).

    Article  CAS  Google Scholar 

  6. —: Food intake and spontaneous activity of rats with lesions in the amygdaloid nuclei. J. Neurophysiol. 15, 421–430 (1952).

    CAS  Google Scholar 

  7. —, G.S. Chhina and B. Singh: Effect of glucose on the activity of hypothalamic “feeding centers”. Science 138, 597–598 (1962).

    Article  CAS  PubMed  Google Scholar 

  8. —, and S. Dua: Stimulation of limbic system in waking animals. Science 122, 1139 (1955).

    Article  CAS  PubMed  Google Scholar 

  9. —: Feeding responses induced by electrical stimulation of the hypothalamus in cat. Indian J. med. Res. 43, 113–122 (1955).

    CAS  PubMed  Google Scholar 

  10. —: Electrical stimulation of the limbic system of brain (‘visceral brain’) in waking animals. Indian J. med. Res. 44, 107–119 (1956).

    CAS  PubMed  Google Scholar 

  11. —: Hypothalamic control over water consumption in the rat. Indian J. med. Res. 46, 426–430 (1958).

    CAS  PubMed  Google Scholar 

  12. —and K. Shoenberg: Hypothalamic control of food intake in cats and monkeys. J. Physiol. (Lond.) 127, 143–152 (1955).

    Article  CAS  Google Scholar 

  13. Andersson, B.: Polydipsia caused by intrahypothalamic injections of hypertonic NaCl-solution. Experientia (Basel) 8, 157–158 (1952).

    Article  CAS  Google Scholar 

  14. —, C.C. Gale, B. Hökfelt and B. Larsson: Acute and chronic effects of preoptic lesions. Acta physiol. scand. 65, 45–60 (1965).

    Article  Google Scholar 

  15. —, and B. Larsson: Influence of local temperature changes in the preoptic area and rostral hypothalamus on the regulation of food and water intake. Acta physiol. scand. 52, 75–89 (1961).

    Article  CAS  PubMed  Google Scholar 

  16. —, S. Larsson and N. Persson: Some characteristics of the hypothalamic “drinking centre” in the goat as shown by the use of permanent electrodes. Acta physiol. scand. 50, 140–152 (1960).

    Article  CAS  PubMed  Google Scholar 

  17. —, and S.M. McCann: Drinking, antidiuresis and milk-ejection from electrical stimulation within the hypothalamus of the goat. Acta physiol. scand. 35, 191–201 (1955).

    Article  CAS  PubMed  Google Scholar 

  18. —: A further study of polydipsia evoked by hypothalamic stimulation in the goat. Acta physiol. scand. 33, 333–346 (1955).

    Article  CAS  PubMed  Google Scholar 

  19. —: The effect of hypothalamic lesions on the water intake of the dog. Acta physiol. scand. 35, 312–320 (1956).

    CAS  PubMed  Google Scholar 

  20. Angerine, J.B., S. Locke and P.I. Yakolev: Limbic nuclei of thalamus and connections of limbic cortex. IV. Thalamocortical projection of the ventral anterior nucleus in man. Arch. Neurol. 7, 518–529 (1962).

    Article  Google Scholar 

  21. Aschner, B.: Über die Funktion der Hypophyse. Pflügers Arch. ges. Physiol. 146, 1–147 (1912).

    Article  Google Scholar 

  22. Bailey, P., and F. Bremer: Experimental diabetes insipidus and genital atrophy. Endocrinology 5, 761–762 (1921).

    Article  CAS  Google Scholar 

  23. —: Experimental diabetes insipidus. Arch. intern. Med. 28, 773–803 (1921).

    Article  CAS  Google Scholar 

  24. Baillie, P., F.K. Miller and A.W. Pratt: Food and water intakes and Walker tumor growth in rats with hypothalamic lesions. Amer. J. Physiol. 209, 293–300 (1965).

    CAS  PubMed  Google Scholar 

  25. Beaton, J.R., A.J. Szlavko and J.A.F. Stevenson: Purification by ultrafiltration of a fat-mobilizing substance extracted from the urine of fasting rats. Canad. J. Physiol. Pharm. 44, 701–709 (1966).

    Article  CAS  PubMed  Google Scholar 

  26. Biggart, J.H., and G.L. Alexander: Experimental diabetes insipidus. J. Path. Bact. 48, 405–425 (1939).

    Article  Google Scholar 

  27. Brecher, G., G.L. Laqueur, E.P. Cronkite, P.M. Edelman and I.L. Schwartz: The brain lesions of goldthioglucose obesity. J. exp. Med. 121, 395–401 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brobeck, J.R.: Mechanism of the development of obesity in animals with hypothalamic lesions. Physiol. Rev. 26, 541–559 (1946).

    CAS  PubMed  Google Scholar 

  29. —: Regulation of feeding and drinking. In: Handbook of Physiology, pp. 1197–1206. Ed. by J. Field. Washington: Amer. Physiol. Soc. (1960).

    Google Scholar 

  30. —, J. Tepperman and C.N.H. Long: Experimental hypothalamic hyperphagia in the albino rat. Yale J. Biol. Med. 15, 831–853 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brooks, C.M., E.F. Lambert and P. Bard: Experimental production of obesity in the monkey (Macaca mulatta). Fed. Proc. 1, 11 (1942).

    Google Scholar 

  32. Brügger, M.: Freßtrieb als hypothalamisches Symptom. Helv. physiol. pharmacol. Acta 1, 183–198 (1943).

    Google Scholar 

  33. Camus, J., et G. Roussy: Anatomie et physiologie pathologiques. Rev. neurol. 38 622–647 (1922).

    Google Scholar 

  34. Carpenter, M.B.: Ventral tier thalamic nuclei. In: Modern Trends in Neurology, pp. 1–20. Ed. by D. Williams. London: Butterworths 1967.

    Google Scholar 

  35. Cizek, L.J.: Long-term observations on relationship between food and water ingestion in the dog. Amer. J. Physiol. 197, 342–346 (1959).

    CAS  PubMed  Google Scholar 

  36. Clark, G., H.W. Magoun and S.W. Ranson: Hypothalamic regulation of body temperature. J. Neurophysiol. 2, 61–80 (1939).

    Google Scholar 

  37. Cohen, D., W.W. Chambers and J.M. Sprague: Experimental study of the efferent projections from the cerebellar nuclei to the brain stem of the cat. J. comp. Neurol. 109, 233–244 (1958).

    Article  CAS  PubMed  Google Scholar 

  38. Cole, M., W.J.H. Nauta and W.H. Mehler: The ascending efferent projections of the substantia nigra. Trans. Amer. neurol. Ass. 89, 74–80 (1964).

    CAS  PubMed  Google Scholar 

  39. Delgado, J.M.R.: Free behavior and brain stimulation. Int. Rev. Neurobiol. 6, 349–449 (1964).

    Article  CAS  PubMed  Google Scholar 

  40. —, and B.K. Anand: Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Amer. J. Physiol. 172, 162–168 (1953).

    CAS  PubMed  Google Scholar 

  41. Epstein, A.N.: Suppression of eating and drinking by amphetamine and other drugs in normal and hyperphagic rats. J.C.P.P. 52, 37–45 (1959).

    CAS  Google Scholar 

  42. Erdheim, J.: Über Hypophysenganggeschwülste und Hirncholesteotome. S.-B. Akad. Wiss. Wien, math.-nat. Kl. 113, 537–564 (1904).

    Google Scholar 

  43. Feldman, S.E., S. Larsson, M.K. Dimick and S. Lepkovsky: Aphagia in the chicken. Amer. J. Physiol. 191, 259–261 (1957).

    CAS  PubMed  Google Scholar 

  44. Fonberg, E., and J.M.R. Delgado: Avoidance and alimentary reactions during amygdala stimulation. J. Neurophysiol. 24, 651–664 (1961).

    CAS  PubMed  Google Scholar 

  45. Freeman, W., and J.W. Watts: Retrograde degeneration of the thalamus following prefrontal lobotomy. J. comp. Neurol. 86, 65–91 (1947).

    Article  CAS  PubMed  Google Scholar 

  46. Fröhlich, A.: Ein Fall von Tumor der Hypophysis cerebri ohne Akromegalie. Wien.klin. Rdsch. 15, 883–898 (1901).

    Google Scholar 

  47. Gastaut, H., R. Vigouroux, J. Corriol et M. Badier: Effets de la stimulation électrique (par électrodes à demeure) du complexe amygdalien chez le Chat non narcosé. J. Physiol. (Paris) 43, 740–746 (1951).

    CAS  Google Scholar 

  48. —: A propos des fonctions “non olfactives” du rhinencéphale. J. Physiol. (Paris) 45, 117–120 (1953).

    CAS  Google Scholar 

  49. Graffe, E., u. E. Grünthal: Über isolierte Beeinflussung des Gesamtstoffwechsels vom Zwischenhirn aus. Klin. Wschr. 8, 1013–1016 (1929).

    Article  Google Scholar 

  50. Greer, M.A.: Suggestive evidence of a primary “drinking center” in hypothalamus of the rat. Exp. Biol. Med. 89, 59–62 (1955).

    Article  CAS  Google Scholar 

  51. Harwood, D., and D.M. Vowles: Forebrain stimulation and feeding behavior in the ring dove. J.C.P.P. 62, 388–396 (1966).

    Google Scholar 

  52. Hassler, R.: Functional anatomy of the thalamus. VI Cong. Latinoam. Neurocirc., Montevideo, pp. 754–760 (1955).

  53. Heinbecker, P., H.L. White and D. Rolf: Experimental obesity in the dog. Amer. J. Physiol. 141, 549–565 (1944).

    Google Scholar 

  54. Hess, W.R., u. K. Akert: Die corticale Repräsentation von Gesicht, Oral- und Pharyngealphare bei der Katze. Helv. physiol. pharmakol. Acta 9, 269–289 (1951).

    CAS  Google Scholar 

  55. Hetherington, A.W.: Obesity in the rat following the injection of chromic acid into the hypophysis. Endocrinology 26, 264–268 (1940).

    Article  CAS  Google Scholar 

  56. —: The production of hypothalamic obesity in rats already displaying chronic hypopituitarism. Amer. J. Physiol. 140, 89–92 (1943).

    CAS  Google Scholar 

  57. —: Non-production of hypothalamic obesity in the rat by lesions rostral or dorsal to the ventro-medial hypothalamic nuclei. J. comp. Neurol. 80, 33–45 (1944).

    Article  Google Scholar 

  58. —, and S.W. Ranson: Experimental hypothalamicohypophyseal obesity in the rat. Proc. Soc. exp. Biol. (N.Y.) 41, 465–466 (1939).

    Article  Google Scholar 

  59. —: Hypothalamic lesions and adiposity in the rat. Anat. Rec. 78, 149–172 (1940).

    Article  Google Scholar 

  60. —: The relation of various hypothalamic lesions to adiposity in the rat. J. comp. Neurol. 76, 475–499 (1942).

    Article  Google Scholar 

  61. —: Effect of early hypophysectomy on hypothalamic obesity. Endocrinology 31, 30–34 (1942).

    Article  Google Scholar 

  62. Hoebel, B.G.: Hypothalamic lesions by electrocauterization: disinhibition of feeding and self-stimulation. Science 149, 452–453 (1965).

    Article  CAS  PubMed  Google Scholar 

  63. —, and P. Teitelbaum: Weight regulation in normal and hypothalamic hyperphagic rats. J.C.P.P. 61, 189–193 (1966).

    CAS  Google Scholar 

  64. Holst, E. Von, and U. Von St. Paul: On the functional organization of drives. Anim. Behav. 11, 1–20 (1963).

    Article  Google Scholar 

  65. Hughes, J.R., and J.A. Mazurowski: Studies on the supracallosal mesial cortex of unanesthetized conscious mammals. II. Monkey. A. Movements elicited by electrical stimulation. Electroenceph. clin. Neurophysiol. 14, 477–485 (1962).

    Article  CAS  PubMed  Google Scholar 

  66. Ingram, W.R., R.W. Barris and S.W. Ranson: Catalepsy — an experimental study. Arch. Neurol. Psychiat. (Chic.) 35, 1175–1197 (1936).

    Article  Google Scholar 

  67. Kaada, B.R., P. Andersen and J. Jansen: Stimulation of the amygdaloid nuclear complex in unanesthetized cats. Neurology 4, 48–64 (1954).

    Article  CAS  PubMed  Google Scholar 

  68. Keller, A.D., D.M. Witt and H.L. Batsel: Slective and permanent elimination of water drinking in the dog. Fed. Proc. 18, 80 (1959).

    Google Scholar 

  69. Kennedy, G.C.: The hypothalamic control of food intake in rats. Proc. roy. Soc. B 137, 535–551 (1950).

    Article  CAS  Google Scholar 

  70. —: Experimental hypothalamic obesity. Proc. roy. Soc. Med. 44, 899–910 (1951).

    CAS  PubMed  Google Scholar 

  71. —: The role of depot fat in the hypothalamic control of food intake in the rat. Proc. roy. Soc. B 140, 578–593 (1953).

    Article  CAS  Google Scholar 

  72. Krasne, F.B.: General disruption resulting from electrical stimulus of ventromedial hypothalamus. Science 138, 822–823 (1962).

    Article  CAS  PubMed  Google Scholar 

  73. Larsson, S.: On the hypothalamic organisation of the nervous mechanism regulating food intake. Acta physiol. scand. 32, Suppl. 115 (1954).

    Google Scholar 

  74. MacLean, P.D.: A chronically fixed stereotactic device for intracerebral exploration with macro- and micro-electrodes. Electroenceph. clin. Neurophysiol. 22, 180–182 (1967).

    Article  CAS  PubMed  Google Scholar 

  75. —, and J.M.R. Delgado: Electrical and chemical stimulation of fronto-temporal portion of limhic system in the waking animal. Electroenceph. clin. Neurophysiol. 5, 91–100 (1953).

    Article  CAS  PubMed  Google Scholar 

  76. Magoun, H.W., S.W. Ranson and C. Fisher: Corticofugal pathways for mastication. lapping and other motor functions in the cat. Arch. Neurol. Psychiat. (Chic.) 30, 292–308 (1933).

    Article  Google Scholar 

  77. Maire, E.W.: Eating and drinking responses elicited by diencephalic stimulation in unanesthetized rats. Science 135, 374–375 (1962).

    Article  Google Scholar 

  78. Mayer, J.: Hunger and the hypothalamus. Clin. Res. Proc. 5, 123–126 (1957).

    Google Scholar 

  79. —, and R.J. Barnett: Obesity following unilateral hypothalamic lesions in rats. Science 121, 599–600 (1955).

    Article  CAS  PubMed  Google Scholar 

  80. Mettler, F.A.: Extracortical connections of the primate frontal cerebral cortex. I. Thalamo-cortical connections. J. comp. Neurol. 86, 95–138 (1947).

    Article  CAS  PubMed  Google Scholar 

  81. Meyer, A., E. Beck and T. McLardy: Prefrontal leucotomy: A neuroanatomical report. Brain 70, 18–32 (1947).

    Article  CAS  PubMed  Google Scholar 

  82. Mogenson, G.L., and J.A.F. Stevenson: Drinking induced by electrical stimulation of the lateral hypothalamus. Exp. Neurol. 17, 119–127 (1967).

    Article  CAS  PubMed  Google Scholar 

  83. Montemurro, D.G., and J.A.F. Stevenson: The localization of hypothalamic structures in the rat influencing water consumption. Yale J. Biol. Med. 28, 396–403 (1955/56).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. —: Adipsia produced by hypothalamic lesions in the rat. Canad. J. Biochem. 35, 31–38 (1957).

    Article  CAS  PubMed  Google Scholar 

  85. Morgane, P.J.: Electrophysiological studies of feeding and satiety centers in the rat. Amer. J. Physiol. 201, 838–844 (1961).

    CAS  PubMed  Google Scholar 

  86. —: Alterations in feeding and drinking behavior of rats with lesions in globi pallidi. Amer. J. Physiol. 201, 420–428 (1961).

    CAS  PubMed  Google Scholar 

  87. —: Medial forebrain bundle and “feeding centers” of the hypothalamus. J. comp. Neurol. 117, 1–26 (1961).

    Article  CAS  PubMed  Google Scholar 

  88. Morgane P.J.: Hypothalamic and rhinencephalic mechanisms in the regulation of caloric intake. XXII Int. Physiol. Cong., pp. 670–676, Leiden 1962.

  89. —: Limbic-hypothalamic-midbrain interaction in thirst and thirst motivated behavior. In: Thirst, pp. 429–452. Ed. by M. Wayner. New York: Pergamon Press 1964.

    Google Scholar 

  90. —, and A.J. Kosman: A rhinencephalic feeding center in the cat. Amer. J. Physiol. 197, 158–162 (1957).

    Google Scholar 

  91. —: Relationship of the middle hypothalamus to amygdalar hyperphagia. Amer. J. Physiol. 198, 1315–1318 (1960).

    CAS  PubMed  Google Scholar 

  92. Morrison, S.D., and J. Mayer: Adipsia and aphagia in rats after lateral suhthalamic lesions. Amer. J. Physiol. 191, 248–254 (1957).

    CAS  PubMed  Google Scholar 

  93. Nauta, W.J.H., and W.R. Mehler: Projections of the lentiform nucleus in the monkey. Brain Res. 1, 3–42 (1966).

    Article  CAS  PubMed  Google Scholar 

  94. — and D.G. Whitlock: An anatomical analysis of the non-specific thalamic projection system. In: Brain Mechanism and Consciousness, pp. 81–106. Ed. by J.F. Delafresnaye. Oxford: Blackwell 1954.

    Google Scholar 

  95. Oomura, Y., K. Kimura, H. Ooyama, T. Maeno, M. Iki and M. Kuniyoshi: Reciprocal activities of the ventromedial and lateral hypothalamic areas of cats. Science 143, 484–485 (1964).

    Article  CAS  PubMed  Google Scholar 

  96. Papez, J.W.: A summary of fiber connections of the basal ganglia with each other and with other portions of the brain. Proc. Ass. Res. nerv. ment. Dis. 21, 21–40 (1942).

    Google Scholar 

  97. Parker, S.W., and S.M. Feldman: Effect of mesencephalic lesions on feeding behavior in rats. Exp. Neurol. 17, 313–326 (1967).

    Article  CAS  PubMed  Google Scholar 

  98. Penfield, W., and H. Jasper: Epilepsy and the functional anatomy of the human brain. Boston: Little, Brown and Co. 1954.

    Google Scholar 

  99. Phillips, R.E.: Wildness in the mallard duck. Effects of brain lesions and stimulation on “escape behavior” and reproduction. J. comp. Neurol. 116, 139–155 (1964).

    Article  Google Scholar 

  100. Ranson, S.W.: Somnolence caused by hypothalamic lesions in the monkey. Arch. Neurol. Psychiat. (Chic.) 41, 1–23 (1939).

    Article  Google Scholar 

  101. — C. Fisher and W.R. Ingram: Adiposity and diabetes mellitus in a monkey with hypothalamic lesions. Endocrinology 23, 175–181 (1938).

    Article  Google Scholar 

  102. — and S.W. Ranson jr..: Efferent fibers of the corpus striatum. Proc. Ass. Res. nerv. ment. Dis. 21, 69–85 (1942).

    Google Scholar 

  103. — and S.W. Ranson jr. and M. Ranson: Corpus striatum and thalamus of a partially decorticate monkey. Arch. Neurol. Psychiat. (Chic.) 46, 402–418 (1941).

    Article  Google Scholar 

  104. Reynolds, R.W.: The effect of amphetamine on food intake in normal and hypothalamic hyperphagic rats. J.C.P.P. 52, 682–687 (1959).

    Google Scholar 

  105. —: Ventromedial hypothalamic lesions without hyperphagia. Amer. J. Physiol. 204, 60–62 (1963).

    CAS  PubMed  Google Scholar 

  106. —: Radio frequency lesions in the ventromedial hypothalamic “feeding center”. J.C.P.P. 56, 965–967 (1963).

    CAS  Google Scholar 

  107. —: An irritative hypothesis concerning the hypothalamic regulation of food intake. Psychol. Rev. 72, 105–116 (1965).

    Article  CAS  PubMed  Google Scholar 

  108. —: Hypothalamic lesions and disinhibition of feeding. Science 150, 1322 (1965).

    Article  CAS  PubMed  Google Scholar 

  109. — and J. Kimm: Effect of glucose on food intake in hypothalamic hyperphagic rats. J.C.P.P. 60, 338–342 (1965).

    Google Scholar 

  110. Robinson, B.W.: Localizing structures in the brain by impedance measures of a roving electrode. EEG clin. Neurophysiol. 13, 310 (1961).

    Article  Google Scholar 

  111. —: The impedance method of localizing intracerebral electrodes. Exp. Neurol. 6, 201–223 (1962).

    Article  CAS  PubMed  Google Scholar 

  112. —: Forebrain alimentary responses. Some organizational principles. In: Thirst, pp. 411–424. Ed. by M. Wayner. New York: Pergamon Press 1964.

    Google Scholar 

  113. Robinson B.W.: Head-mounted electrode platform. Construction and error analysis. Physiol. Behav. 2 (1967). In press.

  114. Robinson B.W. Vocalization evoked from forebrain in Macaca mulatta. Physiol. Behav. 2 (1967).Inpress.

  115. — J.S. Bryan and H.E. Rosvold: Locating brain structures. Arch. Neurol. (Chic.) 13, 477–486 (1965).

    Article  CAS  Google Scholar 

  116. — and M. Mishkin: Alimentary responses evoked from forebrain structures in Macaca mulatta. Science 136, 260–261 (1962).

    Article  CAS  PubMed  Google Scholar 

  117. — and H.E. Tompkins: Extension of the impedance method of localizing intracerebral electrodes. Arch. Neurol. 10, 563–574 (1964).

    Article  CAS  PubMed  Google Scholar 

  118. Rodrigues, J. Antunes, and M.R. Covian: Specific changes in water intake and adipsia for water and sodium chloride after hypothalamic lesions. Acta physiol. lat.-amer. 15, 251–259 (1965).

    CAS  PubMed  Google Scholar 

  119. Rowell, T.W., and R.A. Hinde: Vocal communication by the rhesus monkey (Macaca mulatta). Proc. Zool. Soc. Lond. 138, 279–294 (1962).

    Article  Google Scholar 

  120. —: Agonistic noises of the rhesus monkey (Macaca mulatta). Symp. Zool. Soc. Lond. 8, 91–96 (1962).

    Google Scholar 

  121. Ruch, T.C., M. Blum and J. Brobeck: Taste disturbances from thalamio lesions in monkeys. Amer. J. Physiol. 133, 433–445 (1941).

    Google Scholar 

  122. —, H.D. Patton and J.R. Brobeck: Hyperphagia and adiposity in relation to disturbances of taste. Fed. Proc. 1, 76 (1942).

    Google Scholar 

  123. Russek, M., and P.J. Morgane: Anorexic effect of intraperitoneal glucose in the hypothalamic hyperphagic cat. Nature (Lond.) 199, 1004–1005 (1963).

    Article  CAS  Google Scholar 

  124. Skultety, F.M.: Changes in caloric intake following brain stem lesions in cats. Arch. Neurol. (Chic.) 14, 541–552 (1966).

    Article  CAS  Google Scholar 

  125. Smith, O.A..: Food intake and hypothalamic stimulation. In: Electrical Stimulation of the Brain, pp. 367–370. Ed. by D.E. Sheer. Austin: Univ. of Texas Press 1961.

    Google Scholar 

  126. Smith, P.E.: The tuberal (hypothalamic) syndrome in the rat. J. Amer. med. Ass. 88, 158–161 (1927).

    Article  CAS  Google Scholar 

  127. Startzl, T.E., and H.W. Magoun: Organization of the diffuse thalamic projection system. J. Neurophysiol. 14, 133–142 (1951).

    Google Scholar 

  128. Strominger, J.L.: The relation between water intake and food intake in normal rats and rats with hypothalamic hyperphagia. Yale J. Biol. Med. 19, 279–288 (1947).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Teitelbaum, P., and A.N. Epstein: The lateral hypothalamic syndrome. Psychol. Rev. 69, 74–90 (1962).

    Article  CAS  PubMed  Google Scholar 

  130. —, and E. Stellar: Recovery from the failure to eat produced by hypothalamic lesions. Science 120, 894–895 (1954).

    Article  CAS  PubMed  Google Scholar 

  131. Thomas, D.M., R.P. Kaufman, J.M. Sprague and W.W. Chambers: Experimental studies of the vermal cerebellar projections in the brain stem of the cat. J. Anat. (Lond.) 90, 371–385 (1956).

    CAS  Google Scholar 

  132. Walker, A.E.: The retrograde cell degeneration in the thalamus of macacus rhesus following hemidecortication. J. comp. Neurol. 62, 407–415 (1935).

    Article  Google Scholar 

  133. —: The Primate Thalamus. Chicago: Univ. of Chicago Press 1938.

    Google Scholar 

  134. Walker, W.H., and R.W. Barris: Relationships of thalamic nuclei to the cerebral cortex in the cat. J. comp. Neurol. 67, 317–330 (1937).

    Article  Google Scholar 

  135. Wheatley, M.D.: The hypothalamus and affective behavior in cats. Arch. Neurol. Psychiat. (Chic.) 52, 296–316 (1944).

    Article  Google Scholar 

  136. Williams, D.R., and P. Teitelbaum: Some observations on the starvation resulting from lateral hypothalamic lesions. J.C.P.P. 52, 458–465 (1959).

    Google Scholar 

  137. Winter, P., D. Ploog and J. Latta: Vocal repertoire of the squirrel monkey (Saimiri sciureus), its analysis and significance. Exp. Brain Res. 1, 359–384 (1966).

    Article  CAS  PubMed  Google Scholar 

  138. Witt, D.M., A.D. Keller, H.L. Batsel and J.R. Lynch: Absence of thirst and resultant syndrome associated with anterior hypothalamectomy in the dog. Amer. J. Physiol. 171, 780–788 (1952).

    Google Scholar 

  139. Wolf, G., and J. Sutin: Fiber degeneration after lateral hypothalamic lesions in the rat. J. comp. Neurol. 127, 137–150 (1966).

    Article  CAS  PubMed  Google Scholar 

  140. Wyrwicka, W., and C. Dobrzecka: Relationship between feeding and satiation centers of the hypothalamus. Science 132, 805–806 (1960).

    Article  CAS  PubMed  Google Scholar 

  141. — and R.W. Doty: Feeding induced in cats by electrical stimulation of the brain stem. Exp. Brain Res. 1, 152–160 (1966).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, B.W., Mishkin, M. Alimentary responses to forebrain stimulation in monkeys. Exp Brain Res 4, 330–366 (1968). https://doi.org/10.1007/BF00235700

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235700

Key Words

Navigation