Skip to main content
Log in

An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Radioactive amino acids were injected into restricted regions of the globus pallidus of rhesus macaques to allow identification of the organization and courses of efferent pallidal projections. The previously identified projection of the internal pallidal segment (GPi) to ventral thalamic nuclei showed a topographic organization, with the predominant projection from ventral GPi being to medial and caudal ventralis anterior (VA) and lateralis (VL) and from dorsal GPi to lateral and rostral VA and VL. Pallidal efferent fibers also extended caudally and dorsally into pars caudalis of VL, but they spared the portion of pars oralis of VL shown by others to receive input from the cerebellum. In addition to centromedian labeling in all animals, the parafascicular nucleus was also labeled when isotope was injected into dorsal GPi. The medial route from GPi to the midbrain tegmentum was more substantial than has been shown before, and along this route there was an indication that some fibers terminated in the prerubral region. The projection to the pedunculopontine nucleus was extensive, and fibers continued caudally into the parabrachial nuclei.

Pallidal projections to the thalamus seem to be topographically organized but spare thalamic regions that interact with area 4. Caudally directed efferent fibers follow multiple routes and extend more caudally than to the pedunculopontine nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cd:

caudate nucleus

CM:

centromedian nucleus

CT:

central tegmental tract

DPCS:

decussation of superior cerebellar peduncle

F:

fornix

FLM:

medial longitudinal fasciculus

GPe:

globus pallidus, pars externa

GPi:

globus pallidus, pars interna

HbL:

lateral habenular nucleus

HbM:

medial habenular nucleus

Is:

interstitial nucleus

LM:

medial lemniscus

MD:

dorsomedial nucleus

PbL:

lateral parabrachial nucleus

PbM:

medial parabrachial nucleus

PCS:

superior cerebellar peduncle

Pf:

parafascicular nucleus

PPN:

pedunculopontine nucleus

Put:

putamen

R:

reticular nucleus

Rmg:

red nucleus, pars magnocellularis

Rpc:

red nucleus, pars parvocellularis

S:

stria medullaris

SI:

substantia innominata

SNc:

substantia nigra, pars compacta

SNr:

substantia nigra, pars reticulata

St:

subthalamic nucleus

ST:

stria terminalis

THI:

habenulointerpeduncular tract

TM:

tuberomamillary nucleus

TMT:

mamillothalamic tract

VA:

nucleus ventralis anterior

VAmg:

nucleus ventralis anterior, pars magnocellularis

VAp:

nucleus ventralis anterior, pars principalis

VI:

nucleus ventralis intermedius

VLc:

nucleus ventralis lateralis, pars caudalis

VLm:

nucleus ventralis lateralis, pars medialis

VLo:

nucleus ventralis lateralis, pars oralis

VPL:

nucleus ventralis posterior lateralis

X:

area X

References

  • Anderson ME (1977) Discharge properties of basal ganglia neurons during active maintenance of postural stability and adjustment to chair tilt. Brain Res 143: 325–338.

    Article  Google Scholar 

  • Carpenter MB (1976) Anatomical organization of the corpus striatum and related nuclei. In: Yahr A (ed) The basal ganglia. Raven, New York, pp 1–36.

    Google Scholar 

  • Coote JH, Hilton SM, Zbrozyna W (1973) The pontomedullary area integrating the defense reaction in the cat and its influence on muscle blood flow. J Physiol (Lond) 229: 257–274.

    CAS  Google Scholar 

  • Cowan WM, Powell TPS (1966) Striopallidal projection in the monkey. J Neurol Neurosurg Psychiatry 29: 426–439.

    Article  PubMed  CAS  Google Scholar 

  • Cowan WM, Gottlieb EI, Hendrickson AE, Price JL, Woolsey TA (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37: 21–51.

    Article  PubMed  CAS  Google Scholar 

  • DeLong M (1971) Activity of pallidal neurons during movement. J Neurophysiol 34: 414–427.

    PubMed  CAS  Google Scholar 

  • Desiraju T, Purpura D (1969) Synaptic convergence of cerebellar and lenticular projections to thalamus. Brain Res 15: 544–547.

    Article  PubMed  CAS  Google Scholar 

  • DeVito JL (1969) Projections from the cerebral cortex to intralaminar nuclei in monkey. J Comp Neurol 136: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • DeVito JL, Smith OA Jr (1964) Subcortical projections of the prefrontal lobe of the monkey. J Comp Neurol 123: 413–424.

    Article  PubMed  CAS  Google Scholar 

  • DeVito JL, Anderson ME, Walsh KE (1980) A horseradish peroxidase study of afferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res 38: 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Filion M, Harnois C (1978) A comparison of projections of entopeduncular neurons to the thalamus, the midbrain, and the habenula in the cat. J Comp Neurol 181: 763–780.

    Article  PubMed  CAS  Google Scholar 

  • Grofova I (1975) The identification of striatal and pallidal neurons projecting to substantia nigra. An experimental study by means of retrograde axonal transport of horseradish peroxidase. Brain Res 91: 286–291.

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Nauta WJH (1977) Projections of the habenular nuclei in the rat. Anat Rec 187: 603.

    Google Scholar 

  • Kievit J, Kuypers HGJM (1977) Organization of the thalamocortical connections to the frontal lobe in the rhesus monkey. Exp Brain Res 29: 299–322.

    PubMed  CAS  Google Scholar 

  • Kim R, Nakano J, Hayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures. An autoradiographic study in the monkey. J Comp Neurol 196: 263–289.

    Article  Google Scholar 

  • King GW (1980) Topology of ascending brainstem projections to nucleus parabrachialis in the cat. J Comp Neurol 191: 615–638.

    Article  PubMed  CAS  Google Scholar 

  • Künzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res 88: 195–209.

    Article  PubMed  Google Scholar 

  • Kuo JS, Carpenter MB (1973) Organization of pallidothalamic projections in the rhesus monkey. J Comp Neurol 151: 201–236.

    Article  PubMed  CAS  Google Scholar 

  • Kusama T, Mabuchi M (1970) Stereotaxic atlas of the brain of Macaca fuscata. University Park Press, Baltimore.

    Google Scholar 

  • Nauta HJW (1979) Projections of the pallidal complex. An autoradiographic study in the cat. Neuroscience 4: 1853–1873.

    Article  PubMed  CAS  Google Scholar 

  • Nauta WJH, Mehler WR (1966) Projections of the lentiform nucleus in the monkey. Brain Res 1: 3–42.

    Article  PubMed  CAS  Google Scholar 

  • Olszewski J (1952) The thalamus of the Macaca mulatta. Karger, Basel.

    Google Scholar 

  • Percheron G (1977) Thalamic territory of cerebellar afferents and lateral region of thalamus of macaque in Stereotaxic ventricular coordinates. J Hirnforsch 18: 375–400.

    Google Scholar 

  • Rosene DL, Mesulam MJ (1978) Fixation variables in horseradish peroxidase neurohistochemistry. I. Effect of fixation time and perfusion procedures upon enzyme activity. J Histochem Cytochem 26: 28–39.

    Article  PubMed  CAS  Google Scholar 

  • Strick P (1976) Anatomical analysis of ventrolateral thalamic input to primate motor cortex. J Neurophysiol 39: 1020–1031.

    PubMed  CAS  Google Scholar 

  • Szabo J (1967) The efferent projections of the putamen in the monkey. Exp Neurol 19: 463–476.

    Article  PubMed  CAS  Google Scholar 

  • Szabo J (1970) Projections from the body of the caudate nucleus in the rhesus monkey. Exp Neurol 27: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Tracey DJ, Asanuma C, Jones EG, Porter R (1980) Thalamic relay to motor cortex. Afferent pathways from brain stem, cerebellum, and spinal cord in monkeys. J Neurophysiol 44: 532–554.

    PubMed  CAS  Google Scholar 

  • Ueki M, Uno M, Anderson M, Yoshida M (1977) Monosynaptic inhibition of thalamic neurons produced by stimulation of substantia nigra. Experientia 33: 1480–1481.

    Article  PubMed  CAS  Google Scholar 

  • Uno M, Yoshida M (1975) Monosynaptic inhibition of thalamic neurons produced by stimulation of the pallidal nucleus in cats. Brain Res 99: 377–380.

    Article  PubMed  CAS  Google Scholar 

  • Uno M, Ozawa N, Yoshida M (1978) The mode of pallidothalamic transmission investigated with intracellular recording from cat thalamus. Exp Brain Res 33: 493–507.

    Article  PubMed  CAS  Google Scholar 

  • Woodburne RT, Crosby EC, McCotter RE (1946) The mammalian midbrain and isthmus regions. Part II. The fiber connections. A. The relations of the tegmentum of the midbrain with the basal ganglia in Macaca mulatta. J Comp Neurol 85: 67–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by National Institutes of Health, grant RR00166, Rehabilitation Services Administration, grant 16-P-56818, and PHS grant NS10804

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeVito, J.L., Anderson, M.E. An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta . Exp Brain Res 46, 107–117 (1982). https://doi.org/10.1007/BF00238104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00238104

Key words

Navigation