Skip to main content
Log in

An analysis of potentially converging inputs to the rostral ventral thalamic nuclei of the cat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Potentially convergent inputs to cerebellar-receiving and basal ganglia-receiving areas of the thalamus were identified using horseradish peroxidase (HRP) retrograde tracing techniques. HRP was deposited iontophoretically into the ventroanterior (VA), ventromedial (VM), and ventrolateral (VL) thalamic nuclei in the cat. The relative numbers of labeled neurons in the basal ganglia and the cerebellar nuclei were used to assess the extent to which the injection was in cerebellar-receiving or basal ganglia-receiving portions of thalamus. The rostral pole of VA showed reciprocal connections with prefrontal portions of the cerebral cortex. Only the basal ganglia and the hypothalamus provided non-thalamic input to modulate these cortico-thalamo-cortical loops. In VM, there were reciprocal connections with prefrontal, premotor, and insular areas of the cerebral cortex. The basal ganglia (especially the substantia nigra), and to a lesser extent, the posterior and ventral portions of the deep cerebellar nuclei, provided input to VM and may modulate these corticothalamo-cortical loops. The premotor cortical areas connected to VM include those associated with eye movements, and afferents from the superior colliculus, a region of documented importance in oculomotor control, also were labeled by injections into VM. The dorsolateral portion of the VA-VL complex primarily showed reciprocal connections with the medial premotor (area 6) cortex. Basal ganglia and cerebellar afferents both may modulate this cortico-thalamo-cortical loop, although they do not necessarily converge on the same thalamic neurons. The cerebellar input to dorsolateral VA-VL was from posterior and ventral portions of the cerebellar nuclei, and the major potential brainstem afferents to this region of thalamus were from the pretectum. Mid- and caudo-lateral portions of VL had reciprocal connections with primary motor cortex (area 4). The dorsal and anterior portions of the cerebellar nuclei had a dominant input to this corticothalamo-cortical loop. Potentially converging brainstem afferents to this portion of VL were from the pretectum, especially pretectal areas to which somatosensory afferents project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

central amygdaloid nucleus

AL:

lateral amygdaloid nucleus

AM:

anteromedial thalamic nucleus

AV:

anteroventral thalamic nucleus

BC:

brachium conjunctivum

BIC:

brachium of the inferior colliculus

Cd:

caudate nucleus

CL:

centrolateral thalamic nucleus

CM:

centre median nucleus

CP:

cerebral peduncle

CUN:

cuneate nucleus

DBC:

decussation of the brachium conjunctivum

DR:

dorsal raphe nuclei

EC:

external cuneate nucleus

ENTO:

entopeduncular nucleus

FN:

fastigial nucleus

FX:

fornix

GP:

globus pallidus

GR:

gracile nucleus

IC:

internal capsule

ICP:

inferior cerebellar peduncle

IP:

interpeduncular nucleus

IVN:

inferior vestibular nucleus

LD:

lateral dorsal thalamic nucleus

LGN:

lateral geniculate nucleus

LH:

lateral hypothalamus

LP:

lateral posterior thalamic complex

LRN:

lateral reticular nucleus

LVN:

lateral vestibular nucleus

MB:

mammillary body

MD:

mediodorsal thalamic nucleus

MG:

medial geniculate nucleus

ML:

medial lemniscus

MLF:

medial lengitudinal fasciculus

MT:

mammillothalamic tract

MVN:

medial vestibular nucleus

NDBB:

nucleus of the diagonal band of Broca

NIA:

anterior nucleus interpositus

NIP:

posterior nucleus interpositus

OD:

optic decussation

OT:

optic tract

PAC:

paracentral thalamic nucleus

PPN:

pedunculopontine region

PRO:

gyrus proreus

PRT:

pretectal region

PT:

pyramidal tract

PTA:

anterior pretectal region

PTM:

medial pretectal region

PTO:

olivary pretectal nucleus

PTP:

poterior pretectal region

Pul:

pulvinar nucleus

Put:

putamen

RF:

reticular formation

RN:

red nucleus

Rt:

reticular complex of the thalamus

S:

solitary tract

SCi:

superior colliculus, intermediate gray

SN:

substantia nigra

ST:

subthalamic nucleus

VA:

ventroanterior thalamic nucleus

VB:

ventrobasal complex

VL:

ventrolateral thalamic nucleus

VM:

ventromedial thalamic nucleus

III:

oculomotor nucleus

IIIn:

oculomotor nerve

5S:

spinal trigeminal nucleus

5T:

spinal trigeminal tract

VII:

facial nucleus

References

  • Anderson ME, DeVito JL (1983) Potential sources of convergent input to ventrolateral and ventral anterior nuclei of the thalamus in the cat: an anatomical study. Proc. XXIX conq. of Int.'l Union of Physiol Sciences, XV: 393

    Google Scholar 

  • Anderson ME, DeVito JL (1982) Sources of information converging with basal ganglia or cerebellar input to the thalamus. Soc Neurosci Abstr 8: 170

    Google Scholar 

  • Anderson ME, Yoshida M (1980) Axonal branching patterns and location of nigrothalamic and nigrocollicular neurons in the cat. J Neurophysiol 43: 883–895

    Google Scholar 

  • Asanuma C, Thach WT, Jones EG (1983) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev 5: 237–265

    Google Scholar 

  • Auer J (1956) Terminal degeneration in the diencephalon after ablation of frontal cortex in the cat. J Anat 90: 30–41

    Google Scholar 

  • Beckstead RM (1983) Long collateral branches of substantia nigra pars reticulata axons to thalamus, superior colliculus and reticular formation in monkey and cat. Multiple retrograde neuronal labeling with fluorescent dyes. Neuroscience 10: 767–779

    Google Scholar 

  • Benevento LA, Fallon JH (1975) The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta). J Comp Neurol 160: 339–362

    Google Scholar 

  • Berkley KJ, Mash DC (1978) Somatic sensory projections to the pretectum in the cat. Brain Res 158: 445–449

    Google Scholar 

  • Berman N (1977) Connections of the pretectum in the cat. J Comp Neurol 174: 227–254

    Google Scholar 

  • Carpenter MB (1981) Anatomy of the corpus striatum and brainstem integrating systems. In: Brooks VB (ed) Handbook of physiology, Sect 1, Vol II. Motor control, Part 2. pp 947–996

  • Carpenter MB, Nakano K, Kim R (1976) Nigrothalamic projections in the monkey demonstrated by autoradiographic techniques. J Comp Neurol 165: 401–416

    Google Scholar 

  • Chevalier G, Deniau JM, Thierry AM, Feger J (1981) The nigrotectal pathway. An electrophysiological reinvestigation in the rat. Brain Res 213: 253–263

    Google Scholar 

  • Deniau JM, Lackner D, Feger J (1978) Effect of substantia nigra stimulation on identified neurons in the VL-VA thalamic complex: comparison between intact and chronically decorticated cats. Brain Res 145: 27–35

    Google Scholar 

  • DeVito JL, Anderson ME (1982) An autoradiographic study of efferent connections of the globus pallidus in Macaco mulatto. Exp Brain Res 46: 107–117

    Google Scholar 

  • Graham J (1977) An autoradiographic study of the efferent connections of the superior colliculus in the cat. J Comp Neurol 173: 629–654

    Google Scholar 

  • Guldin WO, Markowitsch HJ (1984) Cortical and thalamic afferent connections of the insular and adjacent cortex of the cat. J Comp Neurol 229: 393–418

    Google Scholar 

  • Harting JK, Huerta MF, Frankfurter AJ, Strominger NL, Royce GJ (1980) Ascending pathways from the monkey superior colliculus: an autoradiographic analysis. J Comp Neurol 192: 853–882

    Google Scholar 

  • Hassler R, Muhs-Clement K (1964) Architektonischer Aufbau des somatosensorischen und parietalen Cortex der Katze. J Hirnforsch 6: 377–420

    Google Scholar 

  • Hendry S, Jones J, Graham J (1979) Thalamic relay nuclei for cerebellar and certain related fiber systems in the cat. J Comp Neurol 185: 679–714

    Google Scholar 

  • Hikosaka O, Wurtz RH (1983a) Visual and occulomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory response to saccades. J Neurophysiol 49: 1230–1253

    Google Scholar 

  • Hikosaka O, Wurtz RH (1983b) Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. J Neurophysiol 49: 1268–1284

    Google Scholar 

  • Ilinsky IA, Jouandet ML, Goldman-Rakic PS (1985) Organization of the nigrothalamocortical system in the rhesus monkey. J Comp Neurol 236: 315–330

    Google Scholar 

  • Ilinsky IA, Kultas-Ilinsky K (1984) An autoradiographic study of topographical relationships between pallidal and cerebellar projections to the cat thalamus. Exp Brain Res 54: 95–106

    Google Scholar 

  • Jahnsen H, Llinas R (1984a) Electrophysiological properties of mammalian thalamic neurons: an in vitro study. J Physiol (Lond) 349: 205–226

    Google Scholar 

  • Jahnsen H, Llinas R (1984b) Ionic basis for the electrical activation and the oscillatory properties of thalamic neurons in vitro. J Physiol (Lond) 349: 227–247

    Google Scholar 

  • Jasper HH, Adjmone-Marsan C (1954) A stereotaxic atlas of the diencephalon of the cat. National Res Council, Ottawa, 15 p

    Google Scholar 

  • Jimenez-Castellanos J, Reinoso-Suarez F (1985) Topographical organization of the afferent connections of the principal ventromedial thalamic nucleus in the cat. J Comp Neurol 236: 297–314

    Google Scholar 

  • Jones EG (1985) The thalamus. Plenum, New York

    Google Scholar 

  • Jones EG, Burton H, Saper CB, Swanson LW (1976) Midbrain, diencephalic, and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J Comp Neurol 167: 385–420

    Google Scholar 

  • Kanaseki T, Sprague JM (1974) Anatomical organization of pretectal nuclei and tectal laminae in the cat. J Comp Neurol 158: 319–338

    Google Scholar 

  • Kultas-Ilinsky K, Ilinsky IA, Massopust LC, Young PA, Smith KR (1978) Nigrothalamic pathway in the cat demonstrated by autoradiography and electron microscopy. Exp Brain Res 33: 481–492

    Google Scholar 

  • Kuo J, Carpenter MB (1973) Organization of pallidothalamic projections in the rhesus monkey. J Comp Neurol 151: 201–236

    Google Scholar 

  • Meibach RC, Siegel A (1977) Efferent connections of the septal area in the rat: an analysis utilizing retrograde and anterograde transport methods. Brain Res 119: 1–20

    Google Scholar 

  • Mesulam M-M (1978) Tetramethyl benzidine for horseradish peroxidase neuro-histochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural efferents and afferents. J Histochem Cytochem 26: 106–117

    Google Scholar 

  • Nakano K, Kohno M, Hasegawa Y, Tokushige A (1985) Cortical and brain stem afferents to the ventral thalamic nuclei of the cat demonstrated by retrograde axonal transport of horseradish peroxidase. J Comp Neurol 231: 102–120

    Google Scholar 

  • Nakano K, Takimoto T, Kayahara T, Takeuchi Y, Kobayashi Y (1980) Distribution of cerebellothalamic neurons projecting to the ventral nuclei of the thalamus: an HRP study in the cat. J Comp Neurol 194: 427–439

    Google Scholar 

  • Nauta HJW (1979) Projections of the pallidal complex: an autoradiographic study in the cat. Neuroscience 4: 1853–1874

    Google Scholar 

  • Parent A, Mackey A, Smith Y, Boucher R (1983) The output organization of the substantia nigra in primate as revealed by a retrograde double labeling method. Brain Res Bull 10: 529

    Google Scholar 

  • Percheron G (1977) The thalamic territory of cerebellar afferents and the lateral region of the thalamus of the macaque in stereotaxic ventricular coordinates. J Hirnforsch 18: 375–400

    Google Scholar 

  • Noda T, Oka H (1985a) Fastigial input to the insular cortex in the cat: field potential analysis. Neurosci Lett 53: 331–336

    Google Scholar 

  • Noda T, Oka H (1985b) The ventromedial nucleus as thalamic relay for fastigial projections to the cat insular cortex. Neurosci Lett 56: 45–49

    Google Scholar 

  • Rinvik E (1968a) The corticothalamic projection from the gyrus proreus and the medial wall of the rostral hemisphere in the cat. An experimental study with silver impregnation methods. Exp Brain Res 5: 129–152

    Google Scholar 

  • Rinvik E (1968b) The corticothalamic projection from the pericruciate and coronal gyri in the cat. An experimental study with silver-impregnation methods. Brain Res 10: 79–119

    Google Scholar 

  • Rinvik E, Grofova I (1974) Cerebellar projections to the n. ventralis lateralis and n. anterior thalami. Anal Embryol 146: 95–111

    Google Scholar 

  • Robertson RT, Thompson SM, Kaitz SS (1983) Projections from the pretectal complex to the thalamic lateral dorsal nucleus of the cat. Exp Brain Res 51: 157–171

    Google Scholar 

  • Schell GR, Strick PL (1984) The origin of the thalamic inputs to the arcuate premotor and supplementary motor areas. J Neurosci 4: 539–560

    Google Scholar 

  • Schlag J, Schlag-Rey M (1970) Induction of oculomotor response by electrical stimulation of the prefrontal cortex in the cat. Brain Res 22: 1–13

    Google Scholar 

  • Segal RL, Beckstead RM, Kersey K, Edwards SB (1983) The prefrontal corticotectal projection in the cat. Exp Brain Res 51: 423–432

    Google Scholar 

  • Strick PL (1970) Cortical projections of the feline thalamic nucleus ventralis lateralis. Brain Res 20: 130–134

    Google Scholar 

  • Tracey DJ, Asanuma C, Jones EG, Porter R (1980) Thalamic relay to motor cortex: afferent pathways from brain stem, cerebellum, and spinal cord in monkeys. J Neurophysiol 44: 532–554

    Google Scholar 

  • Turner RS, Anderson ME (1985) Location and tonic discharge patterns of physiologically-identified pallidal-receiving and cerebellar-receiving thalamic neurons in the awake monkey. Soc Neurosci Abstr 11: 1036

    Google Scholar 

  • Ueki A (1983) The mode of nigro-thalamic transmission investigated with intracellular recording in the cat. Exp Brain Res 49: 116–124

    Google Scholar 

  • Uno M, Ozawa N, Yoshida M (1978) The mode of pallidothalamic transmission investigated with intracellular recording from cat thalamus. Exp Brain Res 33: 493–507

    Google Scholar 

  • Uno M, Yoshida M, Hirato I (1970) The mode of cerebellothalamic relay transmission investigated with intracellular recording from cells of the ventrolateral nucleus of the cat's thalamus. Exp Brain Res 10: 121–139

    Google Scholar 

  • Vedovato M (1978) Identification of afferent connections to cortical area 6 of the cat by means of retrograde horseradish peroxidase transport. Neurosci Lett 9: 303–310

    Google Scholar 

  • Yamamoto T, Noda T, Miyata M, Nishimura Y (1984) Electrophysiological and morphological studies in thalamic neurons receiving entopedunculo- and cerebello-thalamic projections in the cat. Brain Res 301: 231–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, M.E., DeVito, J.L. An analysis of potentially converging inputs to the rostral ventral thalamic nuclei of the cat. Exp Brain Res 68, 260–276 (1987). https://doi.org/10.1007/BF00248792

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248792

Key words

Navigation