Skip to main content
Log in

Methods of renal blood flow measurement

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Variations in regional renal blood flow have been implicated in a variety of disease states. Many techniques have been developed in an attempt to accurately assess these changes. The microsphere technique is the most widely used method at the present time. This technique allows focal measurements to be performed, but there is a conflict between the resolution of the method and the number of microspheres necessary in each sample. New imaging techniques such as tomography and autoradiography enable visual assessment of renal blood flow. Though there is no ideal method, these techniques have opended up new possibilities in the quantification of regional renal blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archie JP, Fixler DE, Ullyat DJ, Hoffmann JIE, Utley JR, Carlson EL (1973) Measurement of cardiac output with organ trapping of radioactive microspheres. J Appl Physiol 35:148

    Google Scholar 

  2. Arendshorst WJ, Finn WF, Gottschalk CW (1976) Micropuncture study of acute renal failure following temporary renal ischemia in the rat. Kidney Int 10:S17

    Google Scholar 

  3. Aukland K (1967) Renal medullary heat clearance in the dog. Circ Res 20:194

    Google Scholar 

  4. Aukland K (1976) Renal blood flow. In: Thurau K (ed) Kidney and urinary tract physiology II. University Park Press, Baltimore, MD, pp 23–79

    Google Scholar 

  5. Aukland K (1980) Methods for measuring renal blood flow: total flow and regional distribution. Ann Rev Physiol 42:543

    Google Scholar 

  6. Aukland K, Berliner RW (1964) Renal medullary countercurrent system studied with hydrogen gas. Circ Res 4:430

    Google Scholar 

  7. Bankir L, Tan MM, Grunfeild J-P (1979) Measurement of glomerular blood flow in rabbits and rats: erroneous findings with 15 μm microspheres. Kidney Int 15:126

    Google Scholar 

  8. Bolme P, Edwell L (1970) Disappearance of xenon-133 and iodine-125 from skeletal muscle of the anaesthetised dog during sympathetic cholinergic vasodilation. Acta Physiol Scand 78:28

    Google Scholar 

  9. Carriere S (1970) A comparison of the disappearance curves of xenon-133 and krypton-85 for measurement of the intrarenal distribution of blood flow. Can J Physiol Pharmacol 48:834

    Google Scholar 

  10. Casellas D, Mimram A (1980) Influence of microsphere size upon their intrarenal distribution of the rat. 4th international symposium of radionuclides and nephrology, Stuttgart, 1980, p 124

  11. Chedru M-F, Baethke R, Oken DE, (1972) Renal cortical blood flow and glomerular filtration in myohemoglobinuric acute renal failure. Kidney Int 1:232

    Google Scholar 

  12. Chen BC, Germano G, Huang SC et al (1992) A new noninvasive quantification of renal blood flow with N-13 ammonia, dynamic positron emission tomography and a two-compartment model. J Am Soc Nephrol 3:1295

    Google Scholar 

  13. Chenitz WR, Nevins BA, Hollenberg NK (1976) Preglomerular resistance and glomerular perfusion in the rat and dog. Am J Physiol 231:961

    Google Scholar 

  14. Clausen G, Hope A, Kirkebo A, Tyessebotn I, Aukland K (1977) Effect of vasodilation on distribution of microspheres and on zonal blood flow measured with diffusible indicators in the dog kidney. Proc Int Union Physiol Sci 13:141

    Google Scholar 

  15. Clausen G, Hope A, Kirkebo A, Tyessebotn I, Aukland K (1978) Glomerular versus postglomerular capillary blood flow. Abstr 7th Int Congr Nephrol Montreal: F12

  16. Claussen G, Hope A, Kerkebo A, Yssenbotn T, Aukland K (1979) Distribution of blood flow in the dog kidney. I. Saturation rates for inert diffusible tracers, 125-iodoantipyrine and tritiated water, versus uptake of microspheres under control conditions. Acta Physiol Scand 107:69

    Google Scholar 

  17. Coelho JB (1977) Medullary plasma flows and juxtamedullary glomeruli (JMG) filtration fraction (FF) in the rat kidney. Kidney Int 12:553

    Google Scholar 

  18. Eckman WW, Phair RD, Fenstermacher JD, Patlak CS, Kennedy C, Sokoloff L (1975) Permeability limitation in estimation of local brain blood flow with C-14 antipyrine. Am J Physiol 229:215

    Google Scholar 

  19. Eklof B, Lassen NA, Nilsson L, Norberg K, Siesjo BK, Torlof P (1974) Regional cerebral blood flow in the rat measured by the tissue sampling technique: a critical evaluation using four indicators. C-14 antipyrine, C-14 ethanol, H-3 water and xenon-133. Acta Physiol Scand 91:1

    Google Scholar 

  20. Geraghty J, Nusubuga M, Angerson WJ, Williams NM, Saragen NN, Dervin PA, Fitzpatrick JM (1993) A study of regional distribution of renal blood flow using quantitative autoradiography. Am J Physiol 263:958

    Google Scholar 

  21. Goldblastt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension. I. The production of persistent elevation of systolic blood pressure by means of renal ischaemia. J Exp Med 59:347

    Google Scholar 

  22. Gould RG, Cogan MG, Siever RS, Lipton MJ (1987) Cine-CT measurement of cortical renal blood flow. J Comput Assit Tomogr 11:779

    Google Scholar 

  23. Grangsjo G (1968) Variations in cortical and medullary blood flow through the dog kidney measured with heated thermocouples. Akademisk Maskinskrift, Sweden

  24. Grayson J (1952) Internal calorimetry in the determination of thermal conductivity and blood flow. J Physiol (London). 118:54

    Google Scholar 

  25. Harsing L, Pelley K (1965) Die Bestimmug der Nierenmarkdurchblutung auf Grand der Ablagerung und Verteilung von 86-Rb. Pflugers Arch 285:302

    Google Scholar 

  26. Hegedus V, Faarup P (1972) Cortical volume of the normal human kidney. Correlated angiographic and morphologic investigations. Acta Radiol 12:481

    Google Scholar 

  27. Hellberg PO, Kallskog O, Wolgast M (1991) Red cell trapping and postischaemic renal blood flow. Differences between the cortex, outer and inner medulla. Kidney Int 40:625

    Google Scholar 

  28. Heller J, Horacek V, Kasalicky J (1979) Renal blood flow distribution at varying perfusion pressure in the alloperfused dog kidney. Pfluegers Arch 382:91

    Google Scholar 

  29. Heymsfield SB, Fulenwider T, Nordlinger B, Barlow R, Sones P, Kutner M (1979) Accurate measurement of liver, kidney and spleen volume and mass by computerised axial tomography. Ann Intern Med 90:185

    Google Scholar 

  30. Hope A, Clausen G, Aukland K (1976) Intrarenal distribution of blood flow in rats determined by I-125-iodoantipyrine uptake. Circ Res 39:362

    Google Scholar 

  31. Hudson D, Scremin OU, Guth PH (1985) Measurements of regional gastroduodenal blood flow with iodo(14C)antipyrine autoradiography. Am J Physiol 248:G539

    Google Scholar 

  32. Inab T, Yamashita M, Kawase Y, Nakahsahi H, Watanabe H (1989) Quantitative measurement of renal plasma flow by positron emission tomography with oxygen-15 water. Tohoku J Exp Med 159:283

    Google Scholar 

  33. Jaschke W, Cogan MG, Sievers RS, Gould RG, Lipton MJ (1987) Measurement of renal blood flow by cine computed tomography. Kidney Int 31:1038

    Google Scholar 

  34. Jaschke W, Sievers RS, Lipton MJ, Coogan MG (1989) Cinecomputed tomography assessment of regional renal blood flow. Acta Radiol 31:77

    Google Scholar 

  35. Kallskog O, Lindbom LO, Ulfendahl HR, Wolgast M (1975) Regional and single glomerular blood flow in the rat kidney prepared for micropuncture. Acta Physiol 94:145

    Google Scholar 

  36. Karlberg L, Kallskog O, Ojteg G, Wolgast M (1982) Renal medullary blood flow studied with the 86-Rb extraction method. Acta Physiol Scand 115:11

    Google Scholar 

  37. Katz M, Blantz R, Rector F, Seldin D (1971) Measurement of intrarenal blood flow. I. Analysis of microsphere method. Am J Physiol 220:1903

    Google Scholar 

  38. Keer JS (1956) Effects of complete urethral obstruction in dogs on kidney function. Am J Physiol 184:521

    Google Scholar 

  39. Kety S (1960) Measurement of local blood flow by the exchange of an inert, diffusible substance. Meth Med Res 8:228

    Google Scholar 

  40. Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1

    Google Scholar 

  41. Knox FG, Ritman EL, Romero JC (1984) Intrarenal distribution of blood flow. Evolution of a new approach to measurement. Int Soc Nephrology 2:473

    Google Scholar 

  42. Knox FG, Spielman WS (1983) Renal circulation. American Physiological Society, Washington, DC, p 183

    Google Scholar 

  43. Kuten A, Roval HD, Griffeth LK, Mintum MA, Perez CA, Wassweman TH, Ter-Pogossian MM (1992) Positron emission tomography in the study of acute radiation effects on renal blood flow in dogs. Int Urol Nephrol 24:527

    Google Scholar 

  44. Landu WM, Freygang WH, Roland LP, Sokoloff L, Kety SS (1955) The local circulation of the living brain; values in the unanesthetized and anethetised cat. Trans Am Neurol Assoc 80:125

    Google Scholar 

  45. Lassen NA, Longley JB (1961) Countercurrent exchange in vessels of renal medulla. Proc Soc Exp Biol Med 106:743

    Google Scholar 

  46. Lipton MJ, Byod DP, Cann C, Strauss L, Sievers RS (1985) Attenuation changes of the normal and ischaemic canine kidncy. Dynamic CT scanning after intravenous contrast medium bolus. Acta Radiol Diagnosis 26:321

    Google Scholar 

  47. Lote C (1987) Principles of renal physiology, 2nd edn. Croom Helm, London p 86

    Google Scholar 

  48. Mattson DL, Lu S, Roman RJ, Crowley AW (1993) Relationship between renal perfusion pressure and blood flow in different regions of the kidney. Am J Physiol 33:R578

    Google Scholar 

  49. Mauer SM, Steffes MW, Ellis EN, Sutherland DER, Brown DM, Gotez FC (1984) Structural-functional relationships in diabetic nephrectomy. J Clin Invest 74:1143

    Google Scholar 

  50. McNay JL, Abe Y (1970) Pressure dependent heterogeneity of renal cortical blood flow in dogs. Circ Res 27:571

    Google Scholar 

  51. Mooney E, Geraghty J, O'Connell M, Kent P, Quarieschi A, Sarazen A, Fitzpatrick J (1994) Radiotracer measurement of ureteric blood flow. J Urol 152:1022

    Google Scholar 

  52. Morkid L, Ofstad J, Willassen Y (1978) Diameter of afferent arterioles during autoregulation estimated from microspheres. Data in the dog kidney. Circ Res 42:181

    Google Scholar 

  53. Nitzsche EU, Choi Y, Killion D et al (1993) Quantification and parametric imaging of renal cortical blood flow in vivo based on Patlak graphical analysis. Kidney Int 44:985

    Google Scholar 

  54. Nygren A, Ulfendahl JR, Hansell P, Erikson U (1988) Effects of intravenous contrast medium on cortical and medullary blood flow in rat kidney. Invest Radiol 23:753

    Google Scholar 

  55. O'Dorisio TM, Stein JH, Osgood RW, Ferris TF (1973) Absence of aglomerular blood flow during renal vasodilation and hemorrhage in the dog. Proc Soc Exp Biol Med 31:277

    Google Scholar 

  56. Olivetti G, Anversa P, Rigamonti W, Vitali-Mazza L, Loud AV (1977) Morphometry of the renal corpuscle during normal postnatal growth and compensatory hypertrophy. J Cell Biol 75:573

    Google Scholar 

  57. Pabico RC, McKenna BA, Freeman RB (1975) Renal function before and after unilateral nephrectomy in renal donors. Kidney Int 8:166

    Google Scholar 

  58. Passmore JC, Neiberger RE, Eden SW (1977) Measurement of intrarenal anatomic distribution of krypton-85 in endotoxic shock in dogs. Am J Physiol 232(1): H54

    Google Scholar 

  59. Rasmussen SN (1978) Red cell and plasma volume flows to the inner medulla of the rat kidney. Pfluegers Arch 375:291

    Google Scholar 

  60. Roed A, Aukland K (1969) Countercurrent exchange of heat in the dog kidney. Circ Res 25:617

    Google Scholar 

  61. Rosivall L, Hope A, Clausen G (1981) Incomplete and flow dependent extraction of 86-Rb in the rat. Pflugers Arch 390:216

    Google Scholar 

  62. Rueda G (1978) Distribution of microspheres of 15±μm diameter in dog kidneys. Experientia 35:617

    Google Scholar 

  63. Sakurada OC, Kennedy J, Jehle JD, Carbin GL, Sokoloff L (1978) Measurements of local cerebral blood flow with (14C)antipyrine. Am J Physiol 227:816

    Google Scholar 

  64. Sandin R, Feuk U, Modig J (1990) Disturbances in renal cortical perfusion with reference to the microsphere technique. Acta Anaesthesiol Scand 34:457

    Google Scholar 

  65. Sandin R, Feuk U, Modig J (1993) Renal vascular response to left atrial injection. An experimental study in the pig. Acta Anaesthesiol Scand 37(1):60

    Google Scholar 

  66. Sapirstein LA (1956) Fractionation of the cardiac output of rats with isotopic potassium. Circ Res 4:689

    Google Scholar 

  67. Schmitz-Feuerhake I, Falkenreck-Herbst I, Coburg AJ, Wonigkeit K, Gerhardt K, Prevot H (1978) Atraumatic method of renal blood flow estimation by xenon-133 inhalation and its application to transplanted kidneys. Eur J Clin Invest 8:75

    Google Scholar 

  68. Stein J (1976) The renal circulation. In: Brenner BM, Rector FC (eds) The kidney. Saunders, Philadelphia, p 215

    Google Scholar 

  69. Stein J, Boonjarern S, Wilson CB, Ferris TF (1973) Alterations in intrarenal blood flow distribution. Methods of measurements and relationships to sodium balance. Circ Res 32:61

    Google Scholar 

  70. Stein JH, Ferris TF, Juprich JE et al (1971) Effect of renal vasodilation on the distribution of cortical blood flow in the kidney of the dog. J Clin Invest 50:1429

    Google Scholar 

  71. Steiner SH, King RD (1970) Nutrient renal blood flow and its distribution in the unanesthetised dog. J Surg Res 10:133

    Google Scholar 

  72. Thornburn GD, Kopald HH, Herd JA, Hollenberg M, O'Morchoe CCC, Burger AC (1963) Intrarenal distribution of nutrient blood flow determined with 85Kr in the unanesthetized dog. Circ Res 12:290

    Google Scholar 

  73. Thurau K, Sugiura T, Lilienfeild LS (1960) Micropuncture of renal vasa recta in hydropenic hamsters. Clin Res 8:383

    Google Scholar 

  74. Trueta J, Barclay AE, Daniel PM, Franklin KJ, Prichard MML (1948) Studies on the renal circulation. Oxford UK, 1948:128

  75. Tyssebotn I, Kirkebo A (1979) Renal cortical blood flow distribution measured by hydrogen clearance during dopamine and acetylcholine infusion. Effect of electrode thickness and position in cortex. Acta Physiol Scand 106:385

    Google Scholar 

  76. Vaughan ED, Sorenson EJ, Gillenwater JY (1970) Renal haemodynamic response to chronic unilateral ureteric obstruction. Surg Form 19:536

    Google Scholar 

  77. Wagner HN, Rhodes BA, Sasaki Y, Ryan JP (1969) Studies of the circulation with radioactive microspheres. Invest Radiol 4:374

    Google Scholar 

  78. Wallin JD, Rector FC, Seldin DW (1971) Measurement of intrarenal plasma flow with antiglomerular basement membrane antibody. Am J Physiol 221:1621

    Google Scholar 

  79. Wilde WS, Thurau K, Schnermann K, Prchal K (1963) Counter current multiplier for albumin in renal papilla. Pflugers Arch Ges Physiol 278:43

    Google Scholar 

  80. Wise KL, McCann RL, Dunnick NR, Paulson DF (1988) Renovascular hypertension. J Urol 140:911

    Google Scholar 

  81. Wolgast M (1968) Studies on the regional renal blood flow with 32-P labelled red cells and small beta-sensitive semicondutor detectors. Acta Physiol Scand (Suppl) 313:

  82. Wolgast M (1972) Renal medullary red cell and plasma flow as studied with labelled indicators and internal detection. Acta Physiol Scand 88:215

    Google Scholar 

  83. Wolgast M, Karlberg L, Kullskog A, Norlen BJ, Nygien K, Ojtey G (1982) haemodynamic alterations in ischaemic acute renal failure. Nephron 31:301

    Google Scholar 

  84. Yarger WE, Byod MA, W SN (1978) Evaluation of methods of measuring glomerular and nutrient blood flow in rat kidneys. Am J Physiol 235:H592

  85. Zillig B, Schuler G, Truniger B (1978) Renal function and intrarenal hemodynamics in acutely hypoxic and hypercapnic rats. Kidney Int 14:58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, L.S., Regan, M.C., Barry, M.K. et al. Methods of renal blood flow measurement. Urol. Res. 24, 149–160 (1996). https://doi.org/10.1007/BF00304078

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00304078

Key words

Navigation