Skip to main content
Log in

Effect of phenytoin, carbamazepine, and valproic acid on caffeine metabolism

  • Originals
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

Three groups of non-smoking epileptic patients without liver disease receiving antiepileptic monotherapy have been compared with 10 healthy non-smoking volunteers. Group 1 received phenytoin (n=10), Group 2 carbamazepine (n=10) and Group 3 valproic acid (n=6). Cytochrome P-450 activity was monitored by measuring urinary 6-β-hydroxycortisol output and systemic antipyrine clearance.

Both, 6-β-hydroxycortisol output and antipyrine clearance were significantly enhanced in patients on phenytoin and carbamazepine, but not in those on valproic acid. On the other hand, phenytoin alone increased the clearance of caffeine from 1.5 (controls) to 3.6 ml · min−1 · kg−1, and reduced its half life from 4.8 to 2.4 h. Carbamazepine and valproic acid had no effect on caffeine metabolism. The results are in keeping with the well known heterogeneity of the hepatic monooxygenase system, as phenytoin and carbamazepine induce different panels of cytochrome P-450 isoenzymes. Phenytoin treatment may impair the validity of the caffeine liver function test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lauterburg B, Bircher J (1973) Hepatic microsomal drug metabolizing capacity measured in vivo by breath analysis. Gastroenterology 65: 556 (abstract)

    Google Scholar 

  2. Andreasen PB, Ranek L, Statland BE, Tygstrup N (1974) Clearance of antipyrine — dependence of quantitative liver function. Eur J Clin Invest 4: 129–134

    Google Scholar 

  3. Wietholtz H, Vögelin M, Arnaud MJ, Bircher J, Preisig R (1981) Assessment of the cytochrome P-448 dependent liver enzyme system by a caffeine breath test. Eur J Clin Pharmacol 21: 53–59

    Google Scholar 

  4. Campbell ME, Grant DM, Inaba T, Kalow W (1987) Biotransformation of caffeine, paraxanthine, theophylline, and theobromine by polycyclic aromatic hydrocarbon-inducible cytochrome(s) P-450 in human liver microsomes. Drug Metab Dispos 15: 237–249

    Google Scholar 

  5. Bircher J, Küpfer A, Gikalov J, Preisig R (1976) Aminopyrine demethylation measured by breath analysis in cirrhosis. Clin Pharmacol Ther 20: 484–492

    Google Scholar 

  6. Desmond P, Patwardhan RH, Johnson RF, Schenker S (1980) Impaired elimination of caffeine in cirrhosis. Dig Dis Sci 25: 193–197

    Google Scholar 

  7. Renner E, Wietholtz H, Huguenin P, Arnaud MJ, Preisig R (1984) Caffeine: A model compound for measuring liver function. Hepatology 1: 38–46

    Google Scholar 

  8. Zysset T, Wietholtz H (1988) Differential effect of type I and type II diabetes on antipyrine disposition in man. Eur J Clin Pharmacol 34: 369–375

    Google Scholar 

  9. Knutti R, Rothweiler H, Schlatter C (1981) Effect of pregnancy on the pharmacokinetics of caffeine. Eur J Clin Pharmacol 21: 121–126

    Google Scholar 

  10. Röllinghoff W, Paumgartner G (1982) Inhibition of drug metabolism by cimetidine in man: Dependence on pretreatment microsomal liver function. Eur J Clin Invest 12: 429–432

    Google Scholar 

  11. Broughton LJ, Roger HJ (1981) Decreased systemic clearance of caffeine due to cimetidine. Br J Clin Pharmacol 12: 155–159

    Google Scholar 

  12. Patwardhan RV, Desmond PV, Johnson RF, Schenker S (1980) Impaired elimination of caffeine by oral contraceptive steroids. J Lab Clin Med 4: 603–608

    Google Scholar 

  13. Beach C, Mays D, Guiler R, Jacober C, Gerber N (1986) Inhibition of elimination of caffeine by disulfiram in normal subjects and recovering alcoholics. Clin Pharmacol Ther 39: 265–270

    Google Scholar 

  14. Park BK, Beckenridge AM (1981) Clinical implications of enzyme induction and inhibition. Clin Pharmacokinet 6: 1–24

    Google Scholar 

  15. Stevenson JH, O'Malley K, Shepherd AM (1976) Relative induction potency of anticonvulsant drugs. In: Richens A, Woodford FP (eds) Anticonvulsant drugs and enzyme induction. Elsevier, Amsterdam, pp 37–46

    Google Scholar 

  16. Aldrige A, Neims AH (1979) The effect of phenobarbital and β-naphtoflavone on the elimination kinetics and metabolic pattern of caffeine in the beagle dog. Drug Metab Dispos 7: 378–382

    Google Scholar 

  17. Parsons WD, Neims AH (1978) Effect of smoking on caffeine clearance. Clin Pharmacol Ther 24: 40–45

    Google Scholar 

  18. Marquis FJ, Carruthers SG, Spence D, Brownstone Y, Toogood J (1983) Phenytoin-theophylline interaction. N Engl J Med 19: 1189–1190

    Google Scholar 

  19. Rosenberry KR, Defusco CJ, Mansmann HC, McGeady SJ (1983) Reduced theophylline half-life induced by carbamazepine therapy. J Pediatrics 3: 472–474

    Google Scholar 

  20. Jost G, Wahlländer A, v. Mandach U, Preisig R (1987) Overnight salivary caffeine clearance: A liver function test suitable for routine use. Hepatology 7: 338–344

    Google Scholar 

  21. Zysset T, Wahlländer A, Preisig R (1984) Evaluation of caffeine plasma levels by an automated enzyme immunoassay (EMIT) in comparison with a high-performance liquid chromatographic method. Ther Drug Monit 6: 348–354

    Google Scholar 

  22. Park BK (1978) A direct radioimmunoassay for 6-β-hydroxycortisol in human urine. J Steroid Biochem 9: 963–966

    Google Scholar 

  23. Zylber-Katz E, Granit L, Levy M (1984) Relationship between caffeine concentration in plasma and saliva. Clin Pharmacol Ther 36: 133–137

    Google Scholar 

  24. v. Mandach U, Jost G, Preisig R (1985) Quantifizierung des arzneimittelabbauenden Enzymsystems bei Leberekrankungen: Vergleiche zwischen Antipyrin Speichelclearance und Aminopyrin Atemtest. Schweiz Med Wochenschr 115: 651–658

    Google Scholar 

  25. Harper JH (1984) Peritz` F-test. Basic program of a multiple comparison test for statistical analysis of all differences among group means. Comput Biol Med 14: 437–445

    Google Scholar 

  26. Wietholtz H, Colombo JP (1976) Das Verhalten der Gamma-Glutamyltranspeptidase und anderer Leberenzyme während der Alkoholentziehungskur. Schweiz Med Wochenschr 106: 981–987

    Google Scholar 

  27. Park BK (1981) Assessment of urinary 6-β-hydroxycortisol as an in vivo index of mixed function oxygenase activity. Br J Clin Pharmacol 12: 97–102

    Google Scholar 

  28. Vesell ES (1979) The antipyrine test in clinical pharmacology: conceptions and misconceptions. Clin Pharmacol Ther 26: 275–286

    Google Scholar 

  29. Schnegg M, Lauterburg B (1986) Quantitative liver function in the elderly assessed by galactose elimination capacity, aminopyrine demethylation and caffeine clearance. J Hepatol 3: 164–171

    Google Scholar 

  30. Moreland TA, Park BK, Rylance GW (1982) Microsomal enzyme induction in children: The influence of carbamazepine treatment on antipyrine kinetics, 6-β-hydroxycortisol excretion and plasma gamma-glutamyltranspeptidase activity. Br J Clin Pharmacol 14: 861–865

    Google Scholar 

  31. Perucca E, Hedges A, Makki KA, Ruprah M, Wilson JF, Richens A (1984) A comparative study of the relative enzyme inducing properties of anticonvulsant drugs in epileptic patients. Br J Clin Pharmacol 18: 401–410

    Google Scholar 

  32. Levy RH, Koch KM (1982) Drug interactions with valproic acid. Drugs 24: 543–556

    Google Scholar 

  33. Bresnick E, Foldes R, Hines RN (1984) Induction of cytochrome P-450 by xenobiotics. Pharmacol Rev 36: 43 S-51 S

    Google Scholar 

  34. Nebert DW, Negishi M (1982) Multiple forms of cytochrome P-450 and the importance of molecular biology and evolution. Biochem Pharmacol 31: 2311–2317

    Google Scholar 

  35. Lu AYH, West SB (1980) Multiplicity of mammalian microsomal cytochromes P-450. Pharmacol Rev 31: 277–295

    Google Scholar 

  36. Ioannides C, Lum PY, Parke DV (1984) Cytochrome p-448 and the activation of toxical chemicals and carcinogens. Xenobiotica 14: 119–137

    Google Scholar 

  37. Wahlländer A, Renner E, Preisig R (1985) Fasting plasma caffeine concentration. A guide to severity of chronic liver disease. Scand J Gastroenterol 20: 1133–1141

    Google Scholar 

  38. Joeres R, Klinker H, Heusler H, Epping J, Zilly W, Richter E (1988) Influence of smoking on caffeine elimination in healthy volunteers and in patients with alcoholic liver cirrhosis. Hepatology 8: 575–579

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wietholtz, H., Zysset, T., Kreiten, K. et al. Effect of phenytoin, carbamazepine, and valproic acid on caffeine metabolism. Eur J Clin Pharmacol 36, 401–406 (1989). https://doi.org/10.1007/BF00558303

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00558303

Key words

Navigation