Skip to main content
Log in

A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser cutting of gelatin and tissue with Er and CO2 lasers is explained by combined action of evaporation, ejection of liquid and elastic deformation of the region of radiation impact. It is shown that the ejection mechanism is more pronounced at 2.94 μm than at 10.6 μm. The use of high speed photography has revealed the influence of the temporal pulse shape. The experimental results are explained by a thermo-mechanical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.M. Zolotarev, B.A. Mikhailov, L.I. Alperovich, S.I. Popov: Opt. Spectrosc.26, 430–432 (1969)

    Google Scholar 

  2. The Infrared Handbook ed. by W.L. Wolfe, G.J. Zissis. Office of naval research, Department of the Navy, Washington DC (1978) pp. 3–106

    Google Scholar 

  3. I. Frauchiger, W. Lüthy: Opt. Quantum Electron.19, 231–235 (1987)

    Google Scholar 

  4. I. Kaplan: InLasers in Biology and Medicine ed. by F. Hillenkamp, R. Pratesi, C.A. Sacchi (Plenum, New York 1980) pp. 347–351

    Google Scholar 

  5. J.T. Walsh, G.J. Hruza, T.H. Flotte, T.F. Deutsch, J.G. Manni, P.F. Moulton: Tech. Dig. Conf. Lasers Electroopt.14 (Opt. Soc. Am., Washington DC 1987) p. 88

    Google Scholar 

  6. There are zirconium fluoride glass fibers that have losses of less than 0.04 dB/m at 2.94 μm and curvature radii of less than 1 cm

  7. See e.g.: D.C. Tran: InTech. Dig., Fifth International Conference on Integrated Optics and Optical Fiber Communication. Instituto Internazionale delle Communicazioni, Genova, Italy (1985) pp. 13–20

    Google Scholar 

  8. L. Esterowitz, C.A. Hoffman, D.C. Tran, K. Levin, M. Storm, R.F. Bonner, P. Smith, M. Leon, V. Ferrans, M.L. Wolbarsht, G.N. Foulks: Tech. Dig. Conf. Lasers Electroopt. Opt. Soc. Am., IEEE Cat. No. 86-CH 2274-9 (1986) pp. 122–123

  9. A.D. Zweig, H.P. Weber: IEEE J. QE-23, 1787–1793 (1987)

    Google Scholar 

  10. S.L. Jaques, S.A. Prahl: Lasers Surg. Med.6, 494–503 (1987)

    Google Scholar 

  11. A. Welch: IEEE J. QE-20, 1471–1480 (1984)

    Google Scholar 

  12. T. Halldorsson, J. Langerholc: Appl. Opt.17, 3948–3958 (1978)

    Google Scholar 

  13. T. Halldorsson, J. Langerholc, J. Senatori, H. Funk: Appl. Opt.20, 822–825 (1981)

    Google Scholar 

  14. O.N. Krokhin: InProceedings of the International School of Physics “Enrico Fermi” course 48, P. Caldirola, H. Knoepfel (Eds.), (Academic, New York 1971) pp. 278–305

    Google Scholar 

  15. O.N. Krokhin: InLaser Handbook ed. by F.T. Arecchi, E.O. Schulz-Du Bois (North-Holland, Amsterdam 1972) pp. 1371–1407

    Google Scholar 

  16. R.C. Weast (ed.):Handbook of Chemistry and Physics, 56th edn. (CRC Press, Cleveland Ohio 1975) p. 0–181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zweig, A.D., Frenz, M., Romano, V. et al. A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm. Appl. Phys. B 47, 259–265 (1988). https://doi.org/10.1007/BF00697347

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00697347

PACS

Navigation