Skip to main content
Log in

Changes in monoaminergic neuronal function in the lower brain stem following subarachnoid hemorrhage induced in rats

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    We investigated the function of monoaminergic neurons in the lower brain stem following subarachnoid hemorrhage (SAH) induced in rats, by measuring monoamine metabolites, usingin vivo microdialysis techniques.

  2. 2.

    A dialysis probe was implanted in the nucleus tractus solitarius (NTS) and the perfusates were assayed by high-performance liquid chromatography (HPLC) with electrochemical detection (ECD).

  3. 3.

    The main monoamine metabolites measured in the NTS extracellular space were 3,4-dihydroxyphenyl acetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA).

  4. 4.

    Monoamine metabolites in the rat NTS were nonspecifically increased, at least in the acute phase after cisternal injection of blood or saline.

  5. 5.

    The disappearance rates of the 5-HIAA decline and the early phase of DOPAC decline after pargyline administration (75 mg/kg, i.p.) were most rapid at 2 days after the induction of SAH, then recovered gradually.

  6. 6.

    These results suggest that functions of noradrenergic and serotonergic neurons in the NTS may be disturbed predominantly in the case of induced vasospasm in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arbab, M. A. R., Wiklund, L., and Svendgaad, N. A. (1986). Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and antegrade WGA-HERP tracing in the rat.Neuroscience 19695–708.

    Google Scholar 

  • Benedict, C. R., and Loach, A. B. (1978). Clinical significance of plasma adrenaline and noradrenaline concentrations in patients with subarachnoid hemorrhage.J. Neurol. Neurosurg. Psychiatry 4113–117.

    Google Scholar 

  • Chamba, G., and Renaud, B. (1983). Distribution of tyrosine hydroxylase, dopamne-β-hydroxylase and phenylethanolamine-n-methyltransferese activities in coronal sections of the rat lower brainstem.Brain Res. 25995–102.

    Google Scholar 

  • Cooper, J. R., Bloom, F. E., and Roth, R. H. (1986). Catecholamines. 1. General aspects. InThe Biochemical Basis of Neuropharmacology, Oxford University Press, New York, pp. 203–258.

    Google Scholar 

  • Delgado, T. J., Brismar, J., and Svendgaard, N. A. (1985). Subarachnoid haemorrhage in the rat: Angiography and fluorescence microscopy of the major cerebral arteries.Stroke 16595–601.

    Google Scholar 

  • Edvinsson, L., Egund, N., Owman, C. H., and Svendgaard, N. A. (1982). Reduced noradrenaline uptake and retention in cerebrovascular nerves associated with angiographically visible vasoconstriction following experimental subarachnoid hemorrhage in rabbits.Brain Res. Bull. 9799–805.

    Google Scholar 

  • Fraser, R. A. R., Syein, B. M., Barrett, R. E., and Pool, J. L. (1970). Noradrenergic mediation of experimental cerebrovascular spasm.Stroke 1356–362.

    Google Scholar 

  • Glowinski, J. (1980). Properties and functions of intraneuronal monoamine compartments in central aminergic neurons. InHandbook of Psychopharmacology, Vol. 3: Biochemistry of Biogenic Amines (L. L. Iversen, S. D. Iversen, and S. H. Snyder, Eds.), Plenum Press, New York, pp. 139–167.

    Google Scholar 

  • Imperato, A., and Di Chiara, G. (1984). Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: A new method for the study of the in vivo release of endogenous dopamine and metabolites.J. Neurosci. 4966–977.

    Google Scholar 

  • Javoy, F., and Glowinski, J. (1971). Dynamic characteristics of the functional compartment of dopamine in dopaminergic terminals of the rat striatum.J. Neurochem. 181305–1311.

    Google Scholar 

  • Kalia, M. P. (1981). Anatomical organization of central respiratory neurons.Annu. Rev. Physiol. 43105–120.

    Google Scholar 

  • Kalia, M., Fuxe, K., and Goldstein, M. (1985). Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes.J. Comp. Neurol. 233308–332.

    Google Scholar 

  • Kawano, T., Tsutsumi, K., Miyake, H., and Mori, K. (1988). Striatal dopamine in acute cerebral ischemia of stroke-resistant rats.Stroke 191540–1543.

    Google Scholar 

  • Klein, R. L. (1973). A large second pool of norepinephrine in the highly purified vesicle fraction from bovine splenic nerve. InFrontiers in Catecholamine Research (E. Usdin and S. H. Snyder, Eds.), Pergamon Press, New York, pp. 423–425.

    Google Scholar 

  • Loach, A. B., and Benedict, C. R. (1980). Plasma catecholamine concentrations associated with cerebral vasospasm.J. Neurol. Sci. 45261–271.

    Google Scholar 

  • Lobato, R. D., Marin, J., Salaices, M., Burgos, J., Rivilla, F., and Garcia, A. G. (1980a). Effect of experimental subarachnoid hemorrhage on the adrenergic innervation of cerebral arteries.J. Neurosurg. 53477–479.

    Google Scholar 

  • Lobato, R. D., Marin, J., Salaices, M., Rivilla, F., and Burgos, J. (1980b). Cerebrovascular reactivity to noradrenaline and serotonin following experimental subarachnoid hemorrhage.J. Neurosurg. 53480–485.

    Google Scholar 

  • Maeda, M., Nakai, M., Krieger, A. J., and Sapru, H. N. (1990). Chemical stimulation of the nucleus tractus solitarii decreases cerebral blood flow in anesthetized rats.Brain Res. 520255–261.

    Google Scholar 

  • Nagatsu, T. (1973). Estimation of the turnover rate or synthesis rate of catecholamines. InBiochemistry of Catecholamines. The Biochemical Method, University of Tokyo Press, Tokyo, pp. 275–288.

    Google Scholar 

  • Nielsen, K. C., and Owman, C. H. (1967). Adrenergic innervation of pial arteries related to the circle of Willis in the cat.Brain Res. 6773–776.

    Google Scholar 

  • Palkovits, M., and Zaborszky, L. (1977). Neuroanatomy of central cardiovascular control. Nucleus tractus solitarii: afferent and efferent neuronal connections in relation to the baroreceptor reflex arc. InHypertension and Brain Mechanisms, Progress in Brain Research, Vol. 47 (W. De Jong, A. P. Provoost, and A. P. Shapiro, Eds.), Elsevier, Amsterdam, pp. 9–34.

    Google Scholar 

  • Paxinos, G., and Watson, C. (1982).The Rat Brain in Stereotaxic Coordinates Academic Press, New York.

    Google Scholar 

  • Racke, K., and Muscholl, E. (1986). Release of endogenous 3,4-dihydroxyphenylethylamine and its metabolites from the isolated neurointermediate lobe of the rat pituitary gland. Effects of electrical stimulation and of inhibition of monoamine oxidase and reuptake.J. Neurochem. 46745–752.

    Google Scholar 

  • Sawchenko, P. E., and Swanson, L. W. (1982). The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat.Brain Res. Rev. 4275–325.

    Google Scholar 

  • Shigeno, T. (1982). Norepinephrine in cerebrospinal fluid of patients with cerebral vasospasm.J. Neurosurg. 56344–349.

    Google Scholar 

  • Solomon, R. A., McCormack, B. M., Lovits, R. N., Swift, D. M., Hegemann, M. T. (1986). Elevation of brain norepinephrine concentration after experimental subarachnoid hemorrhage.Neurosurgery 19363–366.

    Google Scholar 

  • Suaud-Chagny, M. F., Steinberg, R., Mermet, C., Biziere, K., and Gonon, F. (1986). In vivo voltametric monitoring of catecholamine metabolism in the A1 and A2 regions of the rat medulla oblongate.J. Neurochem. 471141–1147.

    Google Scholar 

  • Svendgaard, N. Aa., Edvinsson, L., Olin, T., Owman, C., and Sahlin, C. (1977). On the pathophysiology of cerebral vasospasm: Transmitter changes in perivascular sympathetic nerves, and increased pial artery sensitivity to norepinephrine and serotonin. InNeurogenic Control of the Brain Circulation (C. Owman and L. Edvinsson, Eds.), Pergamon Press, Oxford, pp. 143–152.

    Google Scholar 

  • Svendgaard, N. Aa., Brismar, J., Delgado, T. J., and Rosengeren, E. (1985). Subarachnoid haemorrhage in the rat: Effect on the development of vasospasm of selective lesions of the catecholamine systems in the lower brain stem.Stroke 16602–608.

    Google Scholar 

  • Svendgaard, N. Aa., Arbab, M. A. R., Delgado, T. J., and Rosengren, E. (1987). Effect of selective lesions of medullary catecholamine nuclei on experimental cerebral vasospasm in the rat.J. Cereb. Blood Flow Metab. 721–28.

    Google Scholar 

  • Westerink, B. H. C., Bosker, F. J., and Wirix, E. (1984). Formation and metabolism of dopamine in nine areas of the rat brain: Modifications by haloperidol.J. Neurochem. 421321–1327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirata, K., Kawano, T. & Mori, K. Changes in monoaminergic neuronal function in the lower brain stem following subarachnoid hemorrhage induced in rats. Cell Mol Neurobiol 13, 639–648 (1993). https://doi.org/10.1007/BF00711563

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711563

Key words

Navigation