Skip to main content
Log in

Constraining the lateral dimensions of uniaxially loaded materials increases the calculated strength and stiffness: application to muscle and bone

  • Papers
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

If a solid body is deformed along one direction, by a uniaxial applied stress for instance, then strains will also be induced in perpendicular directions. The negative ratio of the induced strain to the applied strain is known as the Poisson ratio. Analysis of the elasticity tensor relating stress and strain within a solid shows that if the induced strain is restricted, then a greater stress is required to produce the same strain; it appears stiffer. Many biological materials with a mechanical function are subject to forces which are primarily uniaxial. This mechanism appears to be used to maximize the uniaxial load-bearing properties of some of these materials. Muscles are commonly surrounded by strong sheets of connective tissue which will constrain the lateral expansion of the muscle as it contracts. This increases the stress in the muscle for a given strain, and hence the load it can support. Similarly, cancellous bone is normally surrounded by a shell of much stronger compact bone and this effectively increases the stiffness of the cancellous bone without the penalty of increasing the mass, as would be the case if the same stiffening was produced by increasing the degree of calcification. It also has important implications for the failure of bone, which is largely a function of strain rather than stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. JERONIMIDIS and J. F. V. VINCENT, in “Connective Tissue Matrix”, edited by D. W. L. Hukins (Macmillan, London, 1984) p. 187.

    Google Scholar 

  2. T. K. BORG and J. B. CAULFIELD,Tissue Cell 12 (1980) 197.

    Google Scholar 

  3. R. W. D. ROWE, ibid.13 (1981) 681.

    Google Scholar 

  4. R. WARWICK and P. L. WILLIAMS, in “Gray's Anatomy”, 35th Edn (Longman, Edinburgh, 1973) p. 490.

    Google Scholar 

  5. R. W. RAMSEY and S. F. STREET,J. Cell. Comp. Physiol. 15 (1940) 11.

    Google Scholar 

  6. S. WINEGRAD and T. F. ROBINSON,Eur. J. Cardiol. 7 (1978) 63.

    Google Scholar 

  7. E. B. KAPLAN,J. Bone Joint Surg. A40 (1958) 817.

    Google Scholar 

  8. J. E. MACINTOSH, N. BOGDUK and S. GRACOVETSKY,Clin. Biomech. 2 (1987) 78.

    Google Scholar 

  9. F. LINDE and I. HVID,J. Biomech. 22 (1989) 485.

    Google Scholar 

  10. J. F. NYE, in “Physical Properties of Crystals”, 2nd Edn (Clarendon Press, Oxford, 1985) p. 131.

    Google Scholar 

  11. L. N. G. FILON,Phil. Trans. R. Soc. A198 (1902) 147.

    Google Scholar 

  12. D. W. L. HUKINS, in “Collagen in Health and Disease”, edited by M. I. V. Jayson and J. B. Weiss (Churchill-Livingstone, London, 1982) p. 49.

    Google Scholar 

  13. R. M. ASPDEN,Proc. R. Soc. A406 (1986) 287.

    Google Scholar 

  14. T. A. SIKORYN and D. W. L. HUKINS,J. Mater. Sci. Lett. 7 (1988) 1345.

    Google Scholar 

  15. W. G. HORTON,J. Bone Joint Surg. B40 (1958) 552.

    Google Scholar 

  16. D. S. HICKEY and D. W. L. HUKINS,Spine 5 (1980) 106.

    Google Scholar 

  17. R. B. CLARK and J. B. COWEY,J. Exp. Biol. 35 (1958) 731.

    Google Scholar 

  18. P. PURSLOW,J. Biomech. 22 (1989) 21.

    Google Scholar 

  19. G. F. ELLIOTT, J. LOWY, and C. R. WORTHINGTON,J. Mol. Biol. 6 (1963) 295.

    Google Scholar 

  20. A. HIGDONet al., “Mechanics of Materials’, 3rd Edn (Wiley, New York, 1976) p. 157.

    Google Scholar 

  21. D. W. L. HUKINS, R. M. ASPDEN and D. S. HICKEY,Clin. Biomech. 5 (1990) 30.

    Google Scholar 

  22. D. W. L. HUKINS, R. M. ASPDEN and Y. E. YARKER,Eng. Med. 13 (1984) 153.

    Google Scholar 

  23. R. M. ASPDEN and D. W. L. HUKINS,Matrix 9 (1989) 486.

    Google Scholar 

  24. D. CARRet al., Spine 10 (1985) 816.

    Google Scholar 

  25. C. L. PROSSER, in “Comparative Animal Physiology”, 3rd Edn (Saunders, Philadelphia, 1973).

    Google Scholar 

  26. T. C. RUCH and J. F. FULTON, in “Medical Physiology and Biophysics”, 18th Edn of Howells Textbook of Physiology (Saunders, Philadelphia, 1960) p. 107.

    Google Scholar 

  27. R. M. ASPDEN,Spine submitted.

  28. M. IKAI and T. FUKUNAGA,Int. Z. Angew. Physiol. 26 (1968) 26.

    Google Scholar 

  29. S. T. TAKASHIMAet al., J. Biomech. 12 (1979) 929.

    Google Scholar 

  30. T. D. WIESLOW and A. WIGREN,Acta Orthop. Scand. 45 (1974) 599.

    Google Scholar 

  31. D. R. CARTERet al., ibid.52 (1981) 481.

    Google Scholar 

  32. Idem,,J. Biomech. 14 (1981) 461.

    Google Scholar 

  33. K. SHORT, in “Material Properties and Stress Analysis in Biomechanics”, edited by A. L. Yettram (Manchester University Press, Manchester, 1989) p. 95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aspden, R.M. Constraining the lateral dimensions of uniaxially loaded materials increases the calculated strength and stiffness: application to muscle and bone. J Mater Sci: Mater Med 1, 100–104 (1990). https://doi.org/10.1007/BF00839075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00839075

Keywords

Navigation