Skip to main content
Log in

Subcortical damage and cortical dysfunction in progressive supranuclear palsy demonstrated by positron emission tomography

  • Original Communications
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Summary

Regional cerebral glucose metabolism was studied in nine patients with progressive supranuclear palsy (PSP). (18F)-2-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) revealed general cerebral hypometabolism in all PSP patients in comparison with an age-matched reference group. When comparing the degree of regional metabolic deterioration, a consistent pattern of the most affected brain regions became obvious: the strongest significant alteration of cerebral glucose metabolism was observed in subcortical regions, e.g. in caudate nucleus, lentiform nucleus and upper mid-brain, which showed nerve cell loss in previous pathological studies. Less severe, but still significant hypometabolism was observed in frontal cortex. This pattern of hypometabolism was distinctly different from that typically seen in dementias of Alzheimer's type. The present data show that PET findings agree with histopathological studies: PSP is a primarily subcortical disease with secondary inactivation of cortical, especially of frontal brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behrman S, Carroll JD, Janota I, Matthews WB (1969) Progressive supranuclear palsy. Clinico-pathological study of four cases. Brain 92:663–678

    Google Scholar 

  2. Blin J, Baron JC, Dubois B, Pillon B, Cambon H, Cambier J, Agid Y (1990) Positron emission tomography study in progressive supranuclear palsy. Brain hypometabolic pattern and clinico-metabolic correlations. Arch Neurol 47:747–752

    Google Scholar 

  3. Bokobza B, Ruberg M, Scatton B, Javoy-Agid F, Agid Y (1984) (3H)spiperone binding, dopamine and HVA concentration in Parkinson disease and progressive supranuclear palsy. Eur J Pharmacol 99:167–175

    Google Scholar 

  4. D'Antona R, Baron JC, Samson Y, Serdaru M, Viader F, Agid Y, Cambier J (1985) Subcortical dementia. Frontal cortex hypometabolism detected by positron emission tomography in patients with progressive supranuclear palsy. Brain 108:785–799

    Google Scholar 

  5. David NJ, MacKey EA, Smith JL (1968) Further observations in progressive supranuclear palsy. Neurology 18:349–356

    Google Scholar 

  6. Foster NL, Gilman S, Berent S, Morin EM, Brown MB, Koeppe RA (1988) Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography. Ann Neurol 24:399–406

    Google Scholar 

  7. Goffinet AM, Volder AG de, Gillain C, Rectem D, Bol A, Michel C, Cogneau M, Labar D, Laterre C (1989) Positron tomography demonstrates frontal lobe hypometabolism in progressive supranuclear palsy. Ann Neurol 25:131–139

    Google Scholar 

  8. Grafman J, Litvan I, Gomez C, Chase TN (1990) Frontal lobe function in progressive supranuclear palsy. Arch Neurol 47:553–558

    Google Scholar 

  9. Heiss W-D, Pawlik G, Herholz K, Wagner R, Göldner H, Wienhard K (1984) Regional kinetic constants and CMRglu in normal human volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-deoxy-d-glucose. Cereb Blood Flow Metab 4:212–223

    Google Scholar 

  10. Herholz K, Pawlik G, Wienhard K, Heiss W-D (1985) Computer assisted mapping in quantitative analysis of cerebral positron emission tomograms. J Comput Assist Tomogr 9:154–161

    Google Scholar 

  11. Herholz K, Adams R, Kessler J, Szelies B, Grond M, Heiss W-D (1990) Criteria for diagnosis of Alzheimer's disease with positron emission tomography. Dementia 1:156–164

    Google Scholar 

  12. Jankovic J (1984) Progressive supranuclear palsy. Clinical and pharmacologic update. Neurol Clin 2:473–486

    Google Scholar 

  13. Jellinger K (1971) Progressive supranuclear palsy (subcortical argyrophilic dystrophy). Acta Neuropathol (Berl) 19:347–352

    Google Scholar 

  14. Kimura D, Barnett HJM, Burkhart G (1981) The psychological test pattern in progressive supranuclear palsy. Neuropsychologia 19:301–306

    Google Scholar 

  15. Kish SJ, Chang LJ, Mirchandain L, Shannak K, Hornykiewicz O (1985) Progressive supranuclear palsy: relationship between extrapyramidal disturbances, dementia, and brain neurotransmitter markers. Ann Neurol 18:530–536

    Google Scholar 

  16. Kristensen MO (1985) Progressive supranuclear palsy — 20 years later. Acta Neurol Scand 71:177–189

    Google Scholar 

  17. Leenders KL, Frackowiak RSJ, Lees AJ (1988) Steele-Richardson-Olszewski syndrome. Brain energy metabolism, blood flow, and fluorodopa uptake measured by positron emission tomography. Brain 111:615–630

    Google Scholar 

  18. Lees AJ (1987) The Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). In: Marsden CD, Fahn S (eds) Movement disorders 2. Butterworths, London, pp 272–287

    Google Scholar 

  19. Maher ER, Lees AJ (1986) The clinical features and natural history of Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 36:1005–1008

    Google Scholar 

  20. Marsden CD, Schachter M (1981) Assessment of extrapyramidal disorders. Br J Clin Pharmacol 11:129–151

    Google Scholar 

  21. Masucci EF, Borts F, Smirmotopoulos JG, Kurtzke JF, Schellinger D (1985) Thin-section CT of midbrain abnormalities in progressive supranuclear palsy. AJNR 6:767–772

    Google Scholar 

  22. McGeer PL, Kamo H, Harrop R, McGeer EG, Martin WRW, Pate BD, Li DKB (1986) Comparison of PET, MRI and CT with pathology in a proven case of Alzheimer's disease. Neurology 36:1569–1574

    Google Scholar 

  23. Pawlik G, Herholz K, Wienhard K, Beil C, Heiss WD (1986) Some maximum likelihood methods useful for the regional analysis of dynamic PET data on brain glucose metabolism. In: Bacharach SL (ed) Information processing in medical imaging. Nijhoff, Dordrecht Boston Lancaster, pp 298–309

    Google Scholar 

  24. Posey WC (1904) Paralysis of the upward movement of the eyes. Ann Ophthal 13:523–529

    Google Scholar 

  25. Reisberg B (1983) The brief cognitive rating scale and global deterioration scale. In: Crook T, Ferris S, Bartus R (eds) Assessment in geriatric psychopharmacology. Marc Powley Association, New Canaan, pp 19–35

    Google Scholar 

  26. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff P (1979) The (18F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    Google Scholar 

  27. Rougemont D, Baron JC, Collard P, Bustany P, Comar D, Agid Y (1984) Local cerebral glucose utilization in treated and untreated patients with Parkinson's disease. J Neurol Neurosurg Psychiatry 47:824–830

    Google Scholar 

  28. Ruberg M, Javoy-Agid F, Hirsch E, Scatton B, Lheureux R, Hauw JJ, Duyckaerts C, Gray F, Morel-Maroger A, Rascol A, Serdaru M, Agid Y (1985) Dopaminergic and cholinergic lesions in progressive supranuclear palsy. Ann Neurol 18:523–529

    Google Scholar 

  29. Savoiardo M, Strada L, Girotti F, D'Incerti L, Sberna M, Soliveri P, Balzarini L (1989) MR imaging in progressive supranuclear palsy and Shy-Drager syndrome. J Comput Assist Tomogr 13:555–560

    Google Scholar 

  30. Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy. A heterogenous degeneration involving the brainstem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 10:333–359

    Google Scholar 

  31. Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss W-D (1985) Estimation of local cerebral glucose utilization by positron emission tomography of (18F)-2-fluoro-deoxy-d-glucose: a critical appraisal of optimization procedures. J Cereb Blood Flow Metab 5:115–125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karbe, H., Grond, M., Huber, M. et al. Subcortical damage and cortical dysfunction in progressive supranuclear palsy demonstrated by positron emission tomography. J Neurol 239, 98–102 (1992). https://doi.org/10.1007/BF00862982

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00862982

Key words

Navigation