Skip to main content
Log in

Drug interactions with radiopharmaceuticals

  • Occasional Survey
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Considerable information on documented drug and radiopharmaceutical interactions has been assembled in a tabular form, classified by the type of nuclear medicine study. The aim is to provide a rapid reference for nuclear medicine staff to look for such interactions. The initiation of drug chart monitoring or drug history taking of nuclear medicine patients and the reporting of such events are encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sampson CB, Hesslewood SR. Altered biodistribution of radiopharmaceuticals as a result of pharmacological or chemical interaction. In: Theobald AE, ed.Radiopharmaceuticals and radiopharmacy practice. London: Taylor and Francis; 1989:132–151.

    Google Scholar 

  2. Sampson CB. Drugs and chemicals which affect the purity, biodistribution and pharmacokinetics of radiopharmaceuticals.J Biopharm Sci 1990;1(4):381–400.

    Google Scholar 

  3. Lentle BC, Scott JR. Iatrogenic alterations in radionuclide biodistribution.Semin Nucl Med 1979;9:131–143.

    Google Scholar 

  4. Hladik WB, Nigg NK, Rhodes BA. Drug induced changes in the biologic distribution of radiopharmaceuticals.Semin Nucl Med 1982;12:184–218.

    Google Scholar 

  5. Hladik WB, Ponto JA, Lentle BC, Laven DL. Iatrogenic alterations in the biodistribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB, Saha BG, Study KT, eds.Essentials of nuclear medicine science. New York: Williams and Wilkins;1987:189–219.

    Google Scholar 

  6. Leung E, Hesslewood S. Drug interactions with radiopharmaceuticals.Pharm J 1992;248:47–49.

    Google Scholar 

  7. Sampson CB. Adverse reactions and drug interactions with radiopharmaceuticals.Drug Safety 1993;8(4):280–294.

    Google Scholar 

  8. Callahan RJ, Rabito CA. Radiolabelling of erythrocytes with technetium-99m: role of band-3 protein in the transport of pertechnetate across the cell membrane.J Nucl Med 1990;31:2004–2010.

    Google Scholar 

  9. Hicks RJ, Eu P, Arkles LB. Efficiency of labelling red blood cells with technetium-99m after dipyridamole infusion for thallium stress testing.Eur J Nucl Med 1992;19:1050–1053.

    Google Scholar 

  10. Demonceau G, Hebbelinckx D, De Bacquer D, Debatisse D, Bourgeois P. Influence of dipyridamole on Tc-HMPAO-labelled platelets.Eur J Nucl Med 1993;20:845.

    Google Scholar 

  11. Blake GM, Lewington VJ, Fleming JS, Zivanonc MA, Ackery DM. Modification by nifedipine of131I-meta-iodobenzylguanidine kinetics in malignant phaeochromocytoma.Eur J Nucl Med 1988;14:345–348.

    Google Scholar 

  12. Porter WC, Dees SM, Freitas JE, Dworkin HJ. Acid-citrate-dextrose compared with heparin in the preparation of in vivo/in vitro technetium-99m red blood cells.J Nucl Med 1983;24:383–387.

    Google Scholar 

  13. European Association of Nuclear Medicine. European system for reporting adverse reactions to and defects in radiopharmaceuticals: annual report 1992.Eur J Nucl Med 1993;20:A22-A26.

    Google Scholar 

  14. Leung E, Hesslewood S. Use of non-radioactive drugs in nuclear medicine.Pharm J 1992;249:HS32-HS36.

    Google Scholar 

  15. Leung E, Hesslewood S. Drugs used to enhance nuclear medicine studies. In: Sampson CB, ed.Textbook of radiopharmacy: theory and practice, 2nd edn. New York: Gordon and Breach, 1994.

    Google Scholar 

  16. Fisher SM, Brown RG, Greyson ND. Unbinding of Tc-99m by iodinated antiseptics.J Nucl Med 1977;18:1139–1140.

    Google Scholar 

  17. Slater DM, Anderson M, Garvie NW. Syringe extractables, effects on radiopharmaceuticals.Lancet 1983;II;1431.

    Google Scholar 

  18. Millar AM, Wathen CJ, Muir AL. Failure in labelling of red cells with Tc-99m: interaction between intravenous cannulae and stannous pyrophosphate.Eur J Nucl Med 1983;8:502–504.

    Google Scholar 

  19. Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG).Nucl Med Commun 1992;13:513–521.

    Google Scholar 

  20. Fischer M, Vetter W, Winterg B, Zidek W, Vetter H. Adrenal scintigraphy in primary aldosteronism. Spironolactone as a cause of incorrect classification between adenoma and hyperplasia.Eur J Nucl Med 1982;7:222–224.

    Google Scholar 

  21. Khafagi FA, Shapiro B, Gross MD. The adrenal gland. In: Maisey MN, Britton KE, Gilday DL, eds.Clinical nuclear medicine, 2nd edn. London: Chapman & Hall Medical; 1991:271–291.

    Google Scholar 

  22. Gross MD, Valk TW, Swanson DP, Thrall JH, Grekin J, Beierwaltes WH. The role of pharmacologic manipulation in adrenal cortical scintigraphy.Semin Nucl Med 1981;11:128–148.

    Google Scholar 

  23. Sandler ED, Parisi MT, Hattner RS. Duration of etidronate effect demonstrated by serial bone scintigraphy.J Nucl Med 1991;32:1782–1784.

    Google Scholar 

  24. Hommeyer SH, Varney DM, Eary JF. Skeletal nonvisualization in a bone scan secondary to intravenous etidronate therapy.J Nucl Med 1992;33:748–750.

    Google Scholar 

  25. Ryan PJ, Gibson T, Fogelman I. Bone scintigraphy following intravenous pamidronate for Paget's disease of bone.J Nucl Med 1992;33:1589–1593.

    Google Scholar 

  26. Pecherstorfer M, Schilling T, Janisch S, Woloszczuk W, Baumgartner G, Ziegler R, Ogris E. Effect of clodronate treatment on bone scintigraphy in metatstatic breast cancer.J Nucl Med 1993;34:1039–1044.

    Google Scholar 

  27. Verhoeff NPLG. Pharmacological implications for neuroreceptor imaging.Eur J Nucl Med 1991;18:482–502.

    Google Scholar 

  28. Brucke T, Wober C, Harasko-van der Meer C, Asenbaum S, Wenger S, Aull S, Padreka I. Dopamine D2 receptor blockade by different calcium antagonists measured with IBZM SPECT.Eur J Nucl Med 1993;20:856.

    Google Scholar 

  29. Holman BL, Carvalho PA, Mendelson J, Teoh SK, Nardin R, Hallgring E, Hebben N, Jonson KA. Brain perfusion is abnormal in cocaine-dependent polydrug users: a study using Tc-99m-HMPAO and ASPECT.J Nucl Med 1991;32:1206–1210.

    Google Scholar 

  30. Holman BL, Mendelson J, Garada Basem, Teoh SK, Hallgring E, Johnson KA, Mello NK. Regional cerebral blood flow improves with treatment in chronic cocaine polydrug users.J Nucl Med 1993;34:723–727.

    Google Scholar 

  31. Narahara KA, Thompson CJ, Hazen JF, Brizendine M, Mena I. The effect of beta-blockade on single emission computed tomographic (SPECT) thallium-201 images in patients with coronary disease.Am Heart J 1989;117:1030–1035.

    Google Scholar 

  32. Bridges AB, Kennedy N, McNeill GP, Cook B, Pringle TH. The effect of atenolol on dipyridamole T1–201 myocardial perfusion tomography in patients with coronary artery disease.Nucl Med Commun 1992;13:41–46.

    Google Scholar 

  33. Chacko AK, Gordon DH, Bennett JM, O'Mara RE, Wilson GA. Myocardial imaging with Tc-99m pyrophosphate in patients on adriamycin treatment for neoplasia.J Nucl Med 1977;18:680–683.

    Google Scholar 

  34. Estorch M, Carrio I, Berna L, Martinez-Dunvker, Alonso C, Germa JR, Ojeda B. Indium-111-antimyosin scintigraphy after doxorubicin therapy in patients with advanced breast cancer.J Nucl Med 1990;31:1965–1969.

    Google Scholar 

  35. Reuland P, Ruck P, Feine U. Correlation of chemotherapy-induced kidney disorder and antimyosin antibody uptake in kidneys.J Nucl Med 1992;33:309–311.

    Google Scholar 

  36. Carrio I, Lopez-Pousa J, Duncker D, Estorch M, Berna L, Torres G. Comparison of cardiotoxicity by In-111-antimyosin studies: bolus administration versus continuous infusion of doxorubicin.Eur J Nucl Med 1993;20:833.

    Google Scholar 

  37. Lee HB, Wexler JP, Scharf SC, Blaufox MD. Pharmacologic alterations in Tc-99m binding by red blood cells: concise communications.J Nucl Med 1983;24:397–401.

    Google Scholar 

  38. Wong GLM. Labelling of red blood cells with Tc-99m for nuclear medicine studies.Can J Hosp Pharm 1991;44:189–194.

    Google Scholar 

  39. Chung CJ, Hicklin OA, Payan JM, Gordon L. Indium-111-labelled leukocyte scan in detection of synthetic vascular graft infection: the effect of antibiotic treatment.J. Nucl Med 1991;32:13–15.

    Google Scholar 

  40. Datz FL, Thorne DA. Effect of antibiotic therapy on the sensitivity of indium-111-labelled leukocyte scans.J Nucl Med 1986;27:1849–1853.

    Google Scholar 

  41. Nally JV, Black HR. State-of-the-art Review: captopril Renography — pathophysiological considerations and clinical observations.Semin Nucl Med 1992;22:85–97.

    Google Scholar 

  42. Latham TB, Prato FS, Wisenberg G, Reese L. Effects of dipyridamole infusion on human renal function observed using technetium-99m-DTPA.J Nucl Med 1992;33:355–358.

    Google Scholar 

  43. Dorr U, Rath U, Sautter-Bihl M-L, Guzman G, Bach D, Adrian H-J, Bihl H. Improved visualization of carcinoid liver metastases by indium-111 pentetreotide scintigraphy following treatment with cold somatostatin analogue.Eur J Nucl Med 1993;20:431–433.

    Google Scholar 

  44. Grayson MR. Factors which influence the radioactive iodine thyroidal uptake test.Am J Med 1960;28:397–1115.

    Google Scholar 

  45. Thrall JH. Radiopharmaceuticals for endocrine imaging. In: Swanson DP, Chilton HM, Thrall JH (eds)Pharmaceuticals in medical imaging. New York: Macmillan; 1990:343–393.

    Google Scholar 

  46. Laurie AJ, Lyon SG, Lasser EC. Contrast material iodides: potential effects on radioactive iodine thyroid uptake.J Nucl Med 1992;33:237–238.

    Google Scholar 

  47. Chilton HM, Burchiel SC, Watson NE. Radiopharmaceuticals for imaging tumors and inflammatory processes: gallium, antibodies and leukocytes. In: Swanson DP, Chilton HM, Thrall JH (eds)Pharmaceuticals in medical imaging. New York: Macmillan; 1990:564–597.

    Google Scholar 

  48. Khafagi FA, Shapiro B, Fig LM, Mallette S, Sisson JC. Labetalol reduces iodine-131 MIBG uptake by phaeochromocytoma and normal tissues.J Nucl Med 1989;30:481–489.

    Google Scholar 

  49. Jaques S, Tobes MC, Sisson JC. Effect of calcium channel blockers on acetylcholine stimulated and basal release of meta-iodobenzylguanidine and norepinephrine in cultured bovine adrenomedullary cells.J Nucl Med 1987;28:639–640.

    Google Scholar 

  50. Zimmer AM, Pavel DG. Experimental investigations of the possible cause of liver appearance during bone scanning.Radiology 1978;126:813–816.

    Google Scholar 

  51. Chaudhuri TK. Liver uptake of Tc-99m diphosphonate.Radiology 1976;119:485–486.

    Google Scholar 

  52. Alazraki N, Scott S, Manaster BJ, Wooten W, Murphy K. Effect of glucocorticoids on sensitivity of Tc-99m phosphonate bone imaging for detecting bone trauma.J Nucl Med 1987;28:606.

    Google Scholar 

  53. Choy D, Murray IPC, Hoschl R. The effect of iron on the biodistribution of bone scanning agents in humans.Radiology 1981;140:197–202.

    Google Scholar 

  54. Bynn HH, Rodman SG, Chung KE. Soft-tissue concentration of99mTc-phosphates associated with injections of iron dextran complex.J Nucl Med 1976;17:374–375.

    Google Scholar 

  55. Eshima M, Shiozaki H, Ishino Y, Nakata H. Diffuse liver uptake of Tc-99m phosphate compound associated with intravenous injection of iron colloid solution.Clin Nucl Med 1993;18:348–349.

    Google Scholar 

  56. Lutrin CL, Mc Dougall IR, Goris MI. Intense concentration of Tc-99m pyrophosphate in the kidneys of children treated with chemotherapeutic drugs for malignant disease.Radiology 1978;128:165–167.

    Google Scholar 

  57. Schmitt GH, Holmes RA, Isitman AT, Hensley GT, Lewis JD. A proposed mechanism for Tc-99m labelled polyphosphate and diphosphonate uptake by human breast tissue.Radiology 1974;112:733–735.

    Google Scholar 

  58. Flynn BM, Treves ST. Diffuse hepatic uptake of technetium-99m methylene diphosphonate in a patient receiving high dose methotrexate.J Nucl Med 1987;28:532–534.

    Google Scholar 

  59. Cox PH, Sampson CB. Factors affecting the biodistribution of radiopharmaceuticals. In: Sampson CB, ed.Textbook of radiopharmacy: theory and practice. London: Gordon and Breach; 1990:273–287.

    Google Scholar 

  60. Chervu LR, Castronuovo JJ, Huq SS, Milstein DM, Blaufox MD. Alterations in red cell tagging with sulphonamides.J Nucl Med 1981;22:P70.

    Google Scholar 

  61. Ancri D, Lonchampt M, Basset J. The effect of tin on the tissue distribution of Tc-99m sodium pertechnetate.Radiology 1977;124:445–450.

    Google Scholar 

  62. Stebner FC. Steroid effect on the brain scan in a patient with cerebral metastases.J Nucl Med 1975;16:320–321.

    Google Scholar 

  63. Makler PT, Gutowiccz MF, Kuhl DE. Methotrexate-induced ventriculitis: appearance on routine radionuclide scan and emission computed tomography.Clin Nucl Med 1978;3:22–23.

    Google Scholar 

  64. Wang TS, Fawwaz RA, Esser PD, Johnson PM. Altered body distribution of Tc-99m pertechnetate in iatrogenic hyperaluminaemia.J Nucl Med 1978;19:381–383.

    Google Scholar 

  65. Duszynski DO. Tc-99m pertechnetate scanning of the abdomen with particular reference to small bowel pathology.Am J Roentgenol 1971;113:258.

    Google Scholar 

  66. Swayne LC, Kolc J. Erythromycin hepatotoxicity; a rare case of a false positive technetium DISIDA study.Clin Nucl Med 1986;11:10–12.

    Google Scholar 

  67. Joehl RJ, Koch KL, Nahhrwold DL. Opioid drugs cause bile duct obstruction during hepatobiliary scans.Am J Surg 1984;147:134–138.

    Google Scholar 

  68. Messing B, Boris C, Kunstlinger F, Bernier J. Does parenteral nutrition induce gall bladder sludge formation and lithiasis?Gastroenterology 1983;84:1012–1019.

    Google Scholar 

  69. Richards AG, Brighouse R. Nicotinic acid — a cause of failed HIDA scanning.J Nucl Med 1981;22:746–747.

    Google Scholar 

  70. Housholder DF, Hynes HE, Dakhil SR, Marymont JV. Hepatobiliary scintigraphy in patients receiving hepatic artery infusion chemotherapy.J Nucl Med 1985;26:474–477.

    Google Scholar 

  71. Yee CA, Lee HB, Blaufox MD. Tc-99m DMSA renal uptake: influence of biochemistry and physiologic factors.J. Nucl Med 1981;22:1054–1058.

    Google Scholar 

  72. Kremer Hovinga TK, Beukhof JR, Van Luyk WHJ, Piers DA, Donker AJM. Reversible diminished renal99mTc-DMSA uptake during converting-enzyme inhibition in a patient with renal artery stenosis.Eur J Nucl Med 1984;9:144–146.

    Google Scholar 

  73. Specht HD, Belsey R, Hanada Y. Aluminaemic disturbance of technetium-99m DTPA renal function measurement.J Nucl Med 1987;28:383–386.

    Google Scholar 

  74. Bobinet DD, Sevrin R, Zurbriggen MT, Spolter L, Cohen MB. Lung untake of99mTc-sulphur colloid in patient exhibiting presence of Al3+ in plasma.J Nucl Med 1974;15:1220.

    Google Scholar 

  75. Kaplan WD, Drum DE, Lokich JJ. The effect of cancer chemotherapeutic agents on the liver-spleen scan.J Nucl Med 1980;21:84–87.

    Google Scholar 

  76. Lin DS, Sanders JA, Patel BR. Delayed renal localisation of Ga-67: concise communication.J Nucl Med 1983;24:894–897.

    Google Scholar 

  77. Bekerman C, Pavel DG, Bitran U, Ryo Y, Pinsky S. The effects of inadvertent administration of antineoplastic agents prior to Ga-67 injection: concise communication.J Nucl Med 1984;25:430–435.

    Google Scholar 

  78. Moult RG, Beckerman C. Altered biodistribution of Ga-67 by intramuscular gold salts.Clin Nucl Med 1989;14:831–833.

    Google Scholar 

  79. Hattner RS, White DL. Gallium-67/stable gadolinium antagonism: MRI contrast agent markedly alters the normal biodistribution of gallium-67.J Nucl Med 1990;31:1844–1846.

    Google Scholar 

  80. MacMahon H, Beckerman C. The diagnostic significance of gallium lung uptake in patients with normal chest radiographs.Radiology 1978;127:189–193.

    Google Scholar 

  81. Waxman AD. Beldon JR, Richli WR, Tanasescu DE, Siemsen JK. Steroid induced suppression of gallium uptake in tumours of the central nervous system.J Nucl Med 1977;18:617.

    Google Scholar 

  82. Stephanas AV, Maisey MN. Hyperprolactinaemia as a cause of gallium-67 uptake in the breast.Br J Radiol 1976;49:379–380.

    Google Scholar 

  83. Lentle BC, Castor WR, Khaliq A, Dierich H. The effect of contrast lymphangiography on localization of Ga-67 citrate.J Nucl Med 1975;16:374–376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesslewood, S., Leung, E. Drug interactions with radiopharmaceuticals. Eur J Nucl Med 21, 348–356 (1994). https://doi.org/10.1007/BF00947972

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00947972

Key words

Navigation