Skip to main content
Log in

β-Adrenergic receptor activity of cerebral microvessels is reduced in aged rats

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of age on beta-(β) adrenergic receptor number (Bmax) and adenylate cyclase (AC) activity was determined in microvessels isolated from male F-344 rats at 3, 18, and 24 months of age. Scatchard analysis of [125I]iodocyanopindolol (ICYP) binding indicated reduced Bmax (fmol/mg) of microvessels isolated from 24 month old rats (27.2±4.9) compared with 3 month old (50.4±5.2) and 18 month old rats (p<0.01) (61.4±7.6). The basal AC activity (pmol cAMP/mg) in 24 month old rats (32.0 ±6.7) and in 18 month old rats (30.4±2.1) were significantly reduced compared to the basal activity in the young (50.1±4.2). The net isoproterenol or NaF stimulated AC activity in 24 month old rats (zero and 15.6±8.5 respectively) was also reduced compared to young rats (10.1±3.9 and 166.0±21.2 respectively). It is concluded that aging is associated with reduced isoproterenol stimulated AC activity of cerebral microvessels. This reduction is the product of reduced β-adrenergic receptor number and reduced activity of AC in aged rat cerebral microvessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mooradian, A. D. 1988. Effect of aging on the blood-brain barrier. Neurobiol Aging 9:31–40.

    PubMed  Google Scholar 

  2. Embree, L. J., Roubein, I. F., Jackson, D. W., and Ordway, F. 1981. Aging effect on the noradrenaline content of rat brain microvessels. Exp. Aging Res. 7:215–224.

    PubMed  Google Scholar 

  3. Harik, S. I., Sharma, V. K., Wetherbee, J. R., Warren, R. H., and Banerjee, S. P. 1980. Adrenergic receptors of cerebral microvessels. Eur. J. Pharmacol. 61:207–208.

    PubMed  Google Scholar 

  4. Herbst, T. J., Raichle, M. E., and Ferrendelli, J. A. 1979. β-Adrenergic regulation of adenosine-3′, 5′-monophosphate concentration in brain microvessels. Science 204:330–332.

    PubMed  Google Scholar 

  5. Kobayashi, H., Frattola, L., Fetrarese, C., Spano, P. F., and Trabucchi, M. 1982. Characterization of β-adrenergic receptors in human cerebral microvessels. Neurology 32:1384–1387.

    PubMed  Google Scholar 

  6. Kobayashi, H., Maoret, T., Spano, P. F., and Trabucchi, M. 1982. Effect of age on β-adrenergic receptors on cerebral microvessels. Brain Res. 244:374–377.

    PubMed  Google Scholar 

  7. Nathanson, J. A., and Glaser, G. H. 1979. Identification of β-adrenergic sensitive adenylate cyclase in intracranial blood vessels. Nature (Lond.), 228:567–569.

    Google Scholar 

  8. Peroutka, S. K., Moskowitz, M. A., Reinhard, F., Jr., and Snyder, S. H. 1980. Neurotransmitter receptor binding in bovine cerebral microvessels. Science, 208:610–612.

    PubMed  Google Scholar 

  9. Kalaria, R. N., Andorn, A. C., Tabaton, M., Whitehouse, P. J., Harik, S. I., and Unnerstall, J. R. 1989. Adrenergic receptors in aging and Alzheimer's disease: Increased β2-receptors in prefrontal cortex and hippocampus. J. Neurochem. 53:1772–1781.

    PubMed  Google Scholar 

  10. Goldstein, G. W., Wolinsky, J. S., Csejtey, J. and Diamond, I. 1975. Isolation of metabolically active capillaries from rat brain. J. Neurochem. 25:715–717.

    PubMed  Google Scholar 

  11. Pardridge, W. M., Eisenberg, J., and Yamada, T. 1985. Rapid sequestration and degradation of somatostatin analogues by isolated microvessels. J. Neurochem. 44:1178–1184.

    PubMed  Google Scholar 

  12. Albert, Z., Orlowski, M., Azucidlo, A., and Orlowski, J. 1966. Studies on gamma-glutamyl transpeptidase activity and its histochemical localization in the central nervous system of man and different animal species. Acta. Histochem. 25:312–320.

    PubMed  Google Scholar 

  13. Orlowski, M., and Meister, A. 1965. Isolation of gamma-glutamyl transpeptidase from hog kidney. J. Biol. Chem., 240:338–347.

    PubMed  Google Scholar 

  14. Bessey, O. A., Lowry, O. H., and Brock, M. J. 1946. A method for the rapid determination of alkaline phosphatase with five cubic milliliters of serum. J. Biol. Chem. 164:321–329.

    Google Scholar 

  15. Lowry, O. H., Rosebrough, J. N., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:262–275.

    Google Scholar 

  16. Scarpace, P. J., and Yu, B. P. 1987. Diet restriction retards the age-related loss of beta-adrenergic receptors and adenylate cyclase activity in rat lung. J. Gerontol. 42:442–446.

    PubMed  Google Scholar 

  17. Mooradian, A. D., Morley, J. E., and Scarpace P. J. 1988. The role of zine status in altered cardiac adenylate cyclase activity in diabetic rats. Acta. Endocrinol. 119:174–180.

    PubMed  Google Scholar 

  18. Mooradian, A. D., and Scarpace, P. J. 1989. The response to isoproterenol-stimulated adenylate cyclase activity after administration ofl-triiodothyronine is reduced in aged rats. Horm. Metabol. Res. 21:638–639.

    Google Scholar 

  19. Mione, M. C., Dhital, K. K., Amenta, F., and Burnstock, G. 1988. An increase in the expression of neuropeptidergic vasodilator, but not vasoconstrictor, cerebrovascular nerves in aging rats. Brain Res. 460:103–113.

    PubMed  Google Scholar 

  20. Saba, H., Cowen, T., Haven, A. J., and Burnstock, G. 1984. Reduction in noradrenergic perivascular nerve density in the left and right cerebral arteries of old rabbits. J. Cereb. Blood Flow Metab. 4:284–389.

    PubMed  Google Scholar 

  21. Edvinsson, L., Lindvall, M., Neilsen, K. C., and Owman C. H. 1973. Are brain vessels innervated also by central (non-sympathetic) adrenergic neurons? Brain Res. 63:496–499.

    PubMed  Google Scholar 

  22. Itakura, T., Yamamoto, K., Tohyama, M., and Shimizu, N. 1977. Central dual innervation of arterioles and capillaries in the brain. Stroke 8:360–365.

    PubMed  Google Scholar 

  23. McDonald, D. M., and Rasmussen, G. L. 1977. An ultrastructural analysis of neurites in the basal lamina of capillaries in the chinchilla cochlear nucleus. J. Comp. Neurol. 173:475–496.

    PubMed  Google Scholar 

  24. Rennels, M., and Nelson, E. 1975. Capillary innervation in the mammalian central nervous system. An electron microscopic demonstration. Am. J. Anatomy 144:233–241.

    Google Scholar 

  25. Scarpace, P. J., and Abrass, I. B. 1988. Alpha-and beta-adrenergic receptor function in the brain during senescence. Neurobiol. Aging 9:53–58.

    PubMed  Google Scholar 

  26. Scarpace, P. J. 1986. Decreased beta-adrenergic responsiveness during senescence. Federation Proc. 45:51–54.

    Google Scholar 

  27. Robberecht, P., Gillard, M., Waelbroeck, M., Camus, J-C., DeNeef, P., and Christophe, J. 1986. Decreased stimulation of adenylate cyclase by growth hormone releasing factor in the anterior pituitary. Neuroendocrinology 44:429–432.

    PubMed  Google Scholar 

  28. Mooradian A. D. 1990. Age-related differences in body weight loss in response to altered thyroidal status. Exp. Gerontol. 25:29–35.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooradian, A.D., Scarpace, P.J. β-Adrenergic receptor activity of cerebral microvessels is reduced in aged rats. Neurochem Res 16, 447–451 (1991). https://doi.org/10.1007/BF00965565

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965565

Key Words

Navigation