Skip to main content
Log in

Cerebral thiamine-dependent enzyme changes in experimental Wernicke's encephalopathy

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aikawa, H., Watanabe, I. S., Furuse, T., Iwasaki, Y., Satoyoshi, E., Sumi, T., and Moroji, T. (1984). Low energy levels in thiamine-deficient encephalopathy.J. Neuropathol. Exp. Neurol. 43: 276–287.

    Google Scholar 

  • Bennett, C. D., Jones, J. H., and Nelson, J. (1966). The effects of thiamine deficiency on the metabolism of the brain. 1. Oxidation of various substrates in vitro by the liver and brain of normal and pyrithiamine-fed rats.J. Neurochem. 13: 449–459.

    Google Scholar 

  • Butterworth, R. F. (1982). Neurotransmitter function in thiamine-deficiency encephalopathy.Neurochem. Int. 4: 449–464.

    Google Scholar 

  • Butterworth, R. F., Hamel, E., Landreville, F., and Barbeau, A. (1979). Amino acid changes in thiaminedeficient encephalopathy: Some implications for the pathogenesis of Friedreich's ataxia.Can. J. Neurol. Sci. 6: 217–222.

    Google Scholar 

  • Butterworth, R. F., Giguère, J. F., and Besnard, A. M. (1985). Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 1. The pyruvate dehydrogenase complex.Neurochem. Res. 10: 1417–1428.

    Google Scholar 

  • Butterworth, R. F., Giguère, J. F., and Besnard, A. M. (1986). Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 2. α-Ketoglutarate dehydrogenase.Neurochem. Res. 11: 567–577.

    Google Scholar 

  • Cooper, J. R. (1968). The role of thiamine in nervous tissue: The mechanism of action of pyrithiamine.Biochim. Biophys. Acta 156: 368–373.

    Google Scholar 

  • Dreyfus, P. M. (1965). The regional distribution of transketolase in the normal and the thiamine deficient nervous system.J. Neuropathol. Exp. Neurol. 24: 119–129.

    Google Scholar 

  • Dreyfus, P. M., and Hauser, G. (1965). The effect of thiamine deficiency on the pyruvate decarboxylase system of the central nervous system.Biochim. Biophys. Acta 104: 78–84.

    Google Scholar 

  • Gaitonde, M. K., Nixey, R. W. K., and Sharman, I. M. (1974). The effect of deficiency of thiamine on the metabolism of U-14C-glucose and U-14C-ribose and the levels of amino acids in rat brain.J. Neurochem. 22: 53–62.

    Google Scholar 

  • Gaitonde, M. K., Fayein, N. A., and Johnson, A. L. (1975). Decreased metabolismin vivo of glucose into amino acids of the brain of thiamine-deficient rats after treatment with pyrithiamine.J. Neurochem. 24: 1215–1223.

    Google Scholar 

  • Gibson, G. E., Ksiezak-Reding, H., Sheu, K. F. R., Mykytyn, V., and Blass, J. P. (1984). Correlation of enzymatic, metabolic and behavioral deficits in thiamine deficiency and its reversal.Neurochem. Res. 9: 803–814.

    Google Scholar 

  • Gibson, G., Carlson, K., Nielsen, P., and Blass, J. P. (1985). TPP-dependent enzymes in selective brain regions during thiamine deficiency.Trans. Am. Soc. Neurochem. 16: 401.

    Google Scholar 

  • Giguère, J. F., and Butterworth, R. F. (1986). Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 3. TransketolaseNeurochem. Res. (in press).

  • Gubler, C. J. (1961). Studies on the physiological functions of thiamine. 1. The effects of thiamine deficiency and thiamine antagonists on the oxidation of α-keto acids by rat tissues.J. Biol. Chem. 236: 3112–3120.

    Google Scholar 

  • Gubler, C. J., Adams, B. L., Hammond, B., Yuan, E. C., Guo, S. M., and Bennion, M. (1974). Effect of thiamine deprivation and thiamine antagonists on the level of γ-aminobutyric acid and on 2-oxoglutarate metabolism in rat brain.J. Neurochem. 22: 831–836.

    Google Scholar 

  • Hakim, A. M., and Pappius, H. M. (1983). Sequence of metabolic, clinical and histological events in experimental thiamine deficiency.Ann. Neurol. 13: 365–375.

    Google Scholar 

  • Hamel, E., Butterworth, R. F., and Barbeau, A. (1979). Effect of thiamine deficiency on levels of putative amino acid transmitters in affected regions of the rat brain.J. Neurochem. 33: 575–577.

    Google Scholar 

  • Heinrich, C. P., Stadler, H., and Weiser, H. (1973). The effect of thiamine deficiency on the acetylcoenzyme A and acetylcholine levels in the rat brain.J. Neurochem. 21: 1273–1281.

    Google Scholar 

  • Holowach-Thurston, J., Hauhart, R. E., Dirgo, J. A., and McDougal, D. B., Jr. (1985). Thiamine deficiency: Cerebral amino acid levels and neurologic dysfunction. In McCandless, D. W. (ed.),Cerebral Energy Metabolism and Metabolic Encephalopathy, Plenum Press, New York, pp. 353–359.

    Google Scholar 

  • Johnson, L. R., and Gubler, C. J. (1968). Studies on the physiological functions of thiamine. III. The phosphorylation of thiamine in brain.Biochim. Biophys. Acta 156: 85–96.

    Google Scholar 

  • Jones, J. H., and DeAngeli, E. (1960). Thiamine deficiency and thein vivo oxidation of lactate and pyruvate labeled with carbon14.J. Nutr. 70: 537–546.

    Google Scholar 

  • Koeppe, R. E., O'Neal, R. M., and Hahn, C. H. (1964). Pyruvate decarboxylation in thiamine deficient brain.J. Neurochem. 11: 695–699.

    Google Scholar 

  • McCandless, D. W. (1985). Thiamine deficiency and cerebral energy metabolism. In McCandless, D. W. (ed.),Cerebral Energy Metabolism and Metabolic Encephalopathy, Plenum Press, New York, pp. 335–351.

    Google Scholar 

  • McCandless, D. W., and Schenker, S. (1968). Encephalopathy of thiamine deficiency: Studies of intracerebral mechanisms.J. Clin. Invest. 47: 2268–2280.

    Google Scholar 

  • McCandless, D. W., Curley, A. D., and Cassidy, C. E. (1976). Thiamine deficiency and the pentose phosphate cycle in rats: Intracerebral mechanisms.J. Nutr. 106: 1144–1151.

    Google Scholar 

  • McGeer, E. G., and Thompson, S. G. (1983). GABA-transaminase (GABA-T) and glutamic acid decarboxylase (GAD) changes in brain of rats treated with pyrithiamine.J. Neurochem. 41: S28.

    Google Scholar 

  • Murdock, D. S., and Gubler, C. J. (1973). Effects of thiamine deficiency and treatment with the antagonists oxythiamine and pyrithiamine, on the levels and distribution of thiamine derivatives in rat brain.J. Nutr. Sci. Vitaminol. 19: 237–249.

    Google Scholar 

  • O'Brien, J. R., and Peters, R. A. (1935). Vitamin B1 deficiency in the rat's brain.J. Physiol. 85: 454–463.

    Google Scholar 

  • Papp, M., Tarczy, M., Takats, A., Auguszt, A., Komoly, S., and Tulok, I. (1981). Symmetric central thalamic necrosis in experimental thiamine deficient encephalopathy.Acta Neuropathol. (Berl.) Suppl. VII: 48–49.

    Google Scholar 

  • Pincus, J. H., and Grove, I. (1970). Distribution of thiamine phosphate esters in normal and thiaminedeficient brain.Exp. Neurol. 28: 477–483.

    Google Scholar 

  • Pincus, J. H., and Wells, K. (1972). Regional distribution of thiamine-dependent enzymes in normal and thiamine-deficient brain.Exp. Neurol. 37: 495–501.

    Google Scholar 

  • Plaitakis, A., Nicklas, W. J., and Berl, S. (1979). Alterations in uptake and metabolism of aspartate and glutamate in brain of thiamine deficient animals.Brain Res. 171: 489–502.

    Google Scholar 

  • Rindi, G., and Perri, V. (1961). Uptake of pyrithiamine by tissue of rats.Biochem. J. 80: 214–216.

    Google Scholar 

  • Robertson, D. M., Wasan, S. M., and Skinner, D. B. (1968). Ultrastructural features of early brainstem lesions of thiamine-deficient rats.Am. J. Pathol. 52: 1081–1087.

    Google Scholar 

  • Robertson, D. M., Manz, H. J., Haas, R. A., and Meyers, N. (1975). Glucose uptake in the brainstem of thiamine-deficient rats.Am. J. Pathol. 79: 107–118.

    Google Scholar 

  • Schwartz, J. P., and McCandless, D. W. (1976). Glycolytic metabolism in cultured cells of the nervous system. IV. The effects of thiamine deficiency on thiamine levels, metabolites and thiaminedependent enzymes of the C-6 glioma and C-1300 neuroblastoma cell lines.Mol. Cell. Biochem. 13: 49–53.

    Google Scholar 

  • Sharma, S. K., and Quastel, J. H. (1965). Transport and metabolism of thiamine in rat brain cortexin vitro.Biochem. J. 94: 790–800.

    Google Scholar 

  • Sharp, F. R., Bolger, E., and Evans, K. (1982). Thiamine deficiency limits glucose utilization and glial proliferation in brain lesions of symptomatic rats.J. Cerebr. Blood Flow Metab. 2: 203–207.

    Google Scholar 

  • Tellez, I., and Terry, R. D. (1968). Fine structure of the early changes in the lateral vestibular nuclei of the thiamine-deficient rat.Am. J. Pathol. 52: 777–794.

    Google Scholar 

  • Thompson, R. H. S., and Johnson, R. E. (1935). Blood pyruvate in vitamin B1 deficiency.Biochem. J. 29: 694.

    Google Scholar 

  • Troncoso, J. C., Johnson, M. V., Hess, K. M., Griffin, J. W., and Price, D. L. (1981). Model of Wernicke's encephalopathy.Arch. Neurol. 38: 350–354.

    Google Scholar 

  • Vorhees, C. V., Schmidt, D. E., Barrett, R. J., and Schenker, S. (1977). Effects of thiamine deficiency on acetylcholine levels and utilizationin vivo in rat brain.J. Nutr. 107: 1902–1908.

    Google Scholar 

  • Waldenlind, L., Borg, S., and Vikander, B. (1981). Effect of peroral thiamine treatment on thiamine contents and transketolase activity of red blood cells in alcoholic patients.Acta Med. Scand. 209: 209–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butterworth, R.F. Cerebral thiamine-dependent enzyme changes in experimental Wernicke's encephalopathy. Metab Brain Dis 1, 165–175 (1986). https://doi.org/10.1007/BF01001778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01001778

Keywords

Navigation