Skip to main content
Log in

Towards the molecular basis for the regulation of mitochondrial dehydrogenases by calcium ions

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In mammalian cells, increases in calcium concentration cause increases in oxidative phosphorylation. This effect is mediated by the activation of four mitochondrial dehydrogenases by calcium ions; FAD-glycerol 3-phosphate dehydrogenase, pyruvate dehydrogenase, NAD-isocitrate dehydrogenase and oxoglutarate dehydrogenase. FAD-glycerol 3-phosphate dehydrogenase, being located on the outer surface of the inner mitochondrial membrane, is exposed to fluctuations in cytoplasmic calcium concentration. The other three enzymes are located within the mitochondrial matrix.

While the kinetic properties of all of these enzymes are well characterised, the molecular basis for their regulation by calcium is not. This review uses information derived from calcium binding studies, analysis of conserved calcium binding motifs and comparison of amino acid sequences from calcium sensitive and non-sensitive enzymes to discuss how the recent cloning of several subunits from the four dehydrogenases enhances our understanding of the ways in which these enzymes bind calcium. FAD-glycerol 3-phosphate dehydrogenase binds calcium ions through a domain which is part of the polypeptide chain of the enzyme. In contrast, it is possible that the calcium sensitivity of the other dehydrogenases may involve separate calcium binding subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GPDH:

glycerol 3-phosphate dehydrogenase

PDH:

pyruvate dehydrogenase

ICDH:

isocitrate dehydrogenase

OGDH:

oxoglutarate dehydrogenase

References

  1. Berridge MJ: Inositol trisphosphate and calcium signalling. Nature 361: 315–325, 1993

    PubMed  Google Scholar 

  2. Strynadka NCJ, James MNG: Crystal structure of the helix-loop-helix calcium binding proteins. Ann Rev Biochem 58: 951–998, 1989

    PubMed  Google Scholar 

  3. Denton RM, McCormack JG: Calcium as a second messenger in the mitochondria of heart and other tissues. Ann Review Physiol 52: 451–466, 1990

    Google Scholar 

  4. Hansford RG: Dehydrogenase activation by Ca2+ in cells and tissues. J Bioenerg Biomen 23: 823–830, 1991

    Google Scholar 

  5. Aogaichi T, Evans J, Gabriel J, Plant GWE: The effects of calcium and lanthanum ions on the activity of bovine heart specific NADICDH. Arch Biochem Biophys 195: 30–34, 1980

    Google Scholar 

  6. Teague WM, Pettit FH, Wu T-L, Silberman SL, Reed LJ: Purification and properties of pyruvate dehydrogenase phosphatase from bovine heart and kidney. Biochemistry 21: 5585–5592, 1982

    PubMed  Google Scholar 

  7. Wernette ME, Ochs RS, Lardy HA: Ca2+ stimulation of rat liver mitochondrial glycerophosphate dehydrogenase. J Biol Chem 256: 12767–12771, 1981

    PubMed  Google Scholar 

  8. Rutter GA: Calcium binding to citrate cycle dehydrogenases. Int J Biochem 22: 1081–1088, 1990

    PubMed  Google Scholar 

  9. Daveltov BA, S dhof TC: A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J Biol Chem 268: 26386–26390, 1993

    PubMed  Google Scholar 

  10. Klee CB: Calcium dependent phospholipid and membrane binding proteins. Biochemistry 27: 6645–6650, 1988

    PubMed  Google Scholar 

  11. Burgoyne RD, Geisow MJ: The annexin family of calcium binding proteins. Cell Calcium 10: 1–10, 1989

    PubMed  Google Scholar 

  12. Creutz CE: The annexins and exocytosis. Science 248: 924–931, 1992

    Google Scholar 

  13. Huber R, Romisch J, Paques E: The crystal structure of human annexin V, an anticoagulant protein which binds to calcium and membranes. EMBO J 9: 37–3873-1990

    Google Scholar 

  14. Huber R, Schneider M, Romisch J, Paques E: The calcium binding sites in human annexin V by crystal structure analysis at 2.0 resolution. FEBS Lett 275: 15–21, 1990

    PubMed  Google Scholar 

  15. Huber R, Berendes R, Burger A, Schneider M, Karshikov A, Leucke H, Romisch J, Paques E: The crystal structure of human annexin V, after refinement. J Mol Biol 223: 683–690, 1992

    PubMed  Google Scholar 

  16. Sopkova J, Renouard M, Lewit-Bentley J: The crystal structure of a new high calcium form of annexin V. J Mol Biol 234: 816–825, 1994

    Google Scholar 

  17. Bewley MC, Boustead CM, Walker J, Waller R, Huber R: Structure of chicken annexin V at 2.25 resolution. Biochemistry 32: 3923–3925, 1993

    PubMed  Google Scholar 

  18. Concha NO, Head JF, Kaetzel MA, Dedman JR, Seaton BA: Rat annexin V crystal structure: Ca2+-induced conformational changes. Science 261: 1321–1324 1993

    PubMed  Google Scholar 

  19. Weng X, Leucke H, Song I, Kang D, Kim S, Huber R: Crystal structure of human annexin I at 2.5 resolution. Prot Science 2: 448–458, 1993

    Google Scholar 

  20. Oshara O, Tamaki K, Nakamura E, Tsuratu Y, Fujii Y, Shin M, Teraoka H, Okamoto M: Dog and rat pancreatic phospholipase A-2: complete amino acid sequence deduced from cDNAs. J Biochem 99: 733–739, 1986

    PubMed  Google Scholar 

  21. Cole ES, Cyrus AL, Holohan PD, Fondy TP: Isolation and characterisation of flavin linked glycerol 3-phosphate dehydrogenase from rabbit skeletal muscle mitochondria and comparison with the enzyme from rabbit brain. J Biol Chem 253: 7952–7959, 1978

    PubMed  Google Scholar 

  22. Trave G, Cregut D, Lionne C, Quignard J, Chiche L, Sri Widada J, Liautard J-P: Site directed mutagenesis of a calcium binding site modifies specifically the different biochemical properties of annexin I. Protein Engineering 7: 689–696, 1994

    PubMed  Google Scholar 

  23. Persechini A, Moncrief ND, Kretsinger RH: The EF-hand family of calcium-modulated proteins. Trends in Neuroscience, 12: 462–468, 1989

    Google Scholar 

  24. Kretsinger RH: Calcium coordination and the calmodulin fold, divergent versus convergent evolution. Cold Spring Harbour Sym Quant Biol 52: 499–510, 1987

    Google Scholar 

  25. Kretsinger RH, Nockolds CE: Carp muscle binding protein II Structure determination and general description. J Biol Chem 248: 3313–3326, 1973

    PubMed  Google Scholar 

  26. Babu YS, Bugg CE, Cook WJ: Structure of calmodulin refined at 2.2. J Mol Biol 204: 191–204, 1988

    PubMed  Google Scholar 

  27. Herzberg O, James MNG: Structure of the calcium regulatory muscle protein troponin C at 2.8 resolution. Nature 313: 653–659, 1985

    PubMed  Google Scholar 

  28. Szebenyl DME, Moffat K: The refined structure of vitamin D-dependent calcium binding protein from bovine intestine. J Biol Chem 261: 8761–8767, 1986

    PubMed  Google Scholar 

  29. Marsden BJ, Shaw GS, Sykes BD: Calcium binding proteins Elucidating the contributions to calcium affinity from an analysis of species variants and peptide fragments. Biochem Cell Biol 68: 257–262, 1990

    Google Scholar 

  30. Potter JD, Johnson JD: In: W. Cheung (ed.). Calcium and cell function. Academic, New York Volume 2: 145–173, 1982

    Google Scholar 

  31. Ashley CC, Mulligan JP, Lea TJ: Calcium and activation mechanisms in skeletal muscle: Q Rev Biophys 24: 1–73, 1991

    PubMed  Google Scholar 

  32. Renner M, Danielson MA, Falke JF: Kinetic control of Ca2+ signalling: Tuning the ion dissociation rates of EF-hand Ca2+ binding sites. Proc Nat Acad Sci USA 90: 6493–6497, 1993

    PubMed  Google Scholar 

  33. Esterbrook RW, Sacktor B: A-Glycerophosphate oxidase of flight muscle mitochondria. J Biol Chem 233: 1014–1019, 1958

    PubMed  Google Scholar 

  34. Garrib A, McMurray WC: Purification and characterisation of glycerol 3 phosphate dehydrogenase flavin-linked from rat liver mitochondria. J Biol Chem 261: 8042–8048, 1986

    PubMed  Google Scholar 

  35. Hansford RG, Chappel JB: The effect of Ca2+ on the oxidation of glycerol phosphate by blowfly flight muscle mitochondria. Biochem Biophys Res Commun 27: 686–692, 1967

    PubMed  Google Scholar 

  36. Fisher AB, Scarpa A, LaNoue KF, Basset D, Williamson JR: Respiration of rat lung mitochondria and the influence of Ca2+ on substrate utilisation. Biochemistry 23: 1438–1446, 1973

    Google Scholar 

  37. Brown LJ, MacDonald MJ, Lehn DA, Moran SM: Sequence of rat mitochondrial glhcerol-3-phospate cDNA. J Biol Chem 269: 14363–14366, 1994

    PubMed  Google Scholar 

  38. Rutter GA, Pralong W-F, Wollheim CB: Regulation of mitochondrial glycerol-phospate dehydrogenase by Ca2+ within electropermeabilised insulin secreting cells INS-1. Biochim Biophys Acta 1175: 107–113, 1992

    PubMed  Google Scholar 

  39. Breen PJ, Johnson KA, Horrocks WD: Stopped-flow kinetic studies of metal ion dissociation or exchange in a tryptophan containing parvalbumin. Biochemistry 24: 4997–5004, 1985

    PubMed  Google Scholar 

  40. Roennow B, Keilland-Brandt MC: GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase from Saccharomyces cerevisiae. Yeast 9: 1121–1130, 1993

    PubMed  Google Scholar 

  41. Reed LJ: Regulation of mammalian pyruvate dehydrogenase complex by a phosphorylation-dephosphorylation cycle. Curr Top Cell Regul 18: 95–106, 1981

    PubMed  Google Scholar 

  42. Denton RM, Randel PJ, Martin BR: Stimulation by calcium ions of pyruvate dehydrogenase phosphatase. Biochem J 128: 161–163, 1972

    PubMed  Google Scholar 

  43. Thomas AP, Denton RM: Use of toluene permeabilised mitochndria to study the regulation of adipose tissue pyruvate dehydrogenase in situ. Biochem J 238: 83–91, 1986

    PubMed  Google Scholar 

  44. Thomas AP, Diggle TA, Denton RM: Sensitivity of pyruvate dehydrogenase phospate phospatase to magnesium ions Similar effects of spermine and insulin. Biochem J 238: 93–101, 1986

    PubMed  Google Scholar 

  45. Pettit FH, Roche TE, Reed LJ: Function of calcium ions in pyruvate dehydrogenase phosphatase activity. Biochem Biophys Res Commun 49: 563–571, 1972

    PubMed  Google Scholar 

  46. Davis PF, Pettit FH, Reed LJ: Peptides derived from pyruvate dehydrogenase as substrates for PDH kinase and phosphatase. Biochem Biophys Res Commun 75: 41–549, 1977

    Google Scholar 

  47. Lawson JE, Niu X-D, Browning KS, Le Trong H, Yan J, Reed LJ: Molecular cloning and expression of the catalytic subunit of bovine pyruvate dehydrogenase phosphatase and sequence similarity with protein phosphatase 2C. Biochemistry 32: 8987–8993, 1993

    PubMed  Google Scholar 

  48. Koike K, Urata Y, Ohta S, Kawa Y, Koike M: Cloning and sequencing of cDNAs for the beta and alpha subunits of human pyruvate dehydrogenase. Proc Nat Acad Sci USA 85: 41–45, 1988

    PubMed  Google Scholar 

  49. Ramachandran N, Colman RF: Evidence for the presence of two nonidentical subunits in NAD-isocitrate dehydrogenase of pig heart. Proc Natl Acad Sci USA 75: 252–255, 1978

    PubMed  Google Scholar 

  50. Ramachandran N, Colman RF: Chemical characterisation of distinct subunits of pig heart DPN-specific isocitrate dehydrogenase. J Biol Chem 255: 8859–8864, 1980

    PubMed  Google Scholar 

  51. Denton RM, Richards DA, Chin RJ: Calcium ions in the regulation of NAD-isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem J 176: 899–906, 1978

    PubMed  Google Scholar 

  52. McCormack JG, Denton RM: The effects of calcium ions andadenine nucleotides on the activity of pig heart 2-oxoglutarte dehydrogenase complex. Biochem J 180: 533–544, 1979

    PubMed  Google Scholar 

  53. McCormack JG, Denton RM: A comparative study of the regulation by calcium of 2-oxoglutarte dehydrogenase and NAD-isocitrate dehydrogenase from a variety of sources. Biochem J 196: 619–624, 1981

    PubMed  Google Scholar 

  54. Rutter GA, Denton RM: Regulation of NAD-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by calcium ions within toluene permeabilised rat mitochondria. Biochem J 252: 181–189, 1988

    PubMed  Google Scholar 

  55. Rutter GA, Denton RM: The binding of Ca2+ ions to pig heart NAD-isocitrate dehydrogenase and the 2-oxoglutarate dehydrogenase complex. Biochem J 263: 453–462, 1989

    PubMed  Google Scholar 

  56. Plaut GWE, Schramm VL, Aogaichi T: Action of magnesium ion on DPN linked isocitrate dehydrogenase from bovine heart. J Biol Chem 249: 1848–1856, 1974

    PubMed  Google Scholar 

  57. Ehrlich RS, Colman RF: Dissimilar subunits of DPN-isocitrate dehydrogenase. J Biol Chem 258: 7079–7086, 1983

    PubMed  Google Scholar 

  58. Barnes LD, Kuehn GD, Atkinson DE: Yeast DPN specific isocitrate dehydrogenase: purification and some properties. Biochemistry 10: 3939–3946, 1971

    PubMed  Google Scholar 

  59. Cupp JR, McAlister-Henn L: NAD-isocitrate dehydrogenase: cloning, dosruption and nucleotide sequence of the IDH2 gene fromSaccharomyces cerevisiae. J Biol Chem 266: 22199–22205, 1991

    PubMed  Google Scholar 

  60. Cupp JR, McAlister-Henn L: Cloning and characterisation of the gene encoding IDH1 subunit of NAD-isocitrate dehydrogenase from Saccharomyces cerevisiae. J Biol Chem 267: 16417–16423, 1992

    PubMed  Google Scholar 

  61. Nichols BJ, Rigoulet M, Denton RM: Comparison of the effects of Ca2+, adenine nucleotides and pH on the kinetic properties of mitochondrial NAD+-isocitrate dehydrogenase and oxoglutarate dehydrogenase from the yeast Saccharomyces cerevisiae and rat heart. Biochem J 303: 461–465, 1994

    PubMed  Google Scholar 

  62. Nichols BJ, Hall L, Perry ACF; Denton RM: Molecular cloning and deduced amino acid sequences of the g-subunits of rat and monkey NAD+-isocitrate dehydrogenases. Biochem J 295: 347–350, 1993

    PubMed  Google Scholar 

  63. Koike M, Koike K: Structure, assembly and function of mammalian a-keto acid dehydrogenase complexes. Adv Biophys 9: 187–227, 1976

    Google Scholar 

  64. Perham RN: Domains, motifs and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional enzyme. Biochemistry 30: 8501–8512, 1991

    PubMed  Google Scholar 

  65. Lawlis VB, Roche TE: Inhibition of bovine kidney a-ketoglutarate dehydrogenase by NAD in the presence or absence of calcium ion and effect of ADP on NAD inhibition. Biochemistry 20: 2523–2527, 1981

    Google Scholar 

  66. Rutter GA, Leake MJ, McCormack JG, Denton RM: Role of Ca2+ and Mg2+ in the control of pyruvate and 2-oxoglutarate dehydrogenase complexes. In: H. Bisswanger and J. Ullrich (eds). Proceedings of the Third International Meeting on The Function of Thiamine Diphosphate Enzymes, VCH Ltd, 1991

  67. Walsh DA, Cooper RH, Denton RM, Bridges BJ, Randle RM: The elementary reactions of the pig heart pyruvate dehydrogenase complex A study of the inhibition by phosphorylation. Biochem J 157: 41–46, 1976

    PubMed  Google Scholar 

  68. Koike K, Urata Y, Goto S: Cloning and nucleotide sequence of the cDNA encoding human 2-oxoglutarate dehydrogenase (lipoamide). Proc Nat Acad Sci USA 89: 1963–1967, 1992

    PubMed  Google Scholar 

  69. Repetto B, Tzagoloff A: Structure and regulation of KGD1, the structural gene for yeast α-ketoglutarate dehydrogenase. Mol Cell Biol 9: 2695–2705, 1989

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, B.J., Denton, R.M. Towards the molecular basis for the regulation of mitochondrial dehydrogenases by calcium ions. Mol Cell Biochem 149, 203–212 (1995). https://doi.org/10.1007/BF01076578

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076578

Key words

Navigation