Skip to main content
Log in

Annexin II tetramer: structure and function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The annexins are a family of proteins that bind acidic phospholipids in the presence of Ca2+. The interaction of these proteins with biological membranes has led to the suggestion that these proteins may play a role in membrane trafficking events such as exocytosis, endocytosis and cell-cell adhesion. One member of the annexin family, annexin II, has been shown to exist as a monomer, heterodimer or heterotetramer. The ability of annexin II tetramer to bridge secretory granules to plasma membrane has suggested that this protein may play a role in Ca2+-dependent exocytosis. Annexin II tetramer has also been demonstrated on the extracellular face of some metastatic cells where it mediates the binding of certain metastatic cells to normal cells. Annexin II tetramer is a major cellular substrate of protein kinase C and pp60src. Phosphorylation of annexin II tetramer is a negative modulator of protein function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geisow MJ, Ali SM, Boustead C, Burgoyne RD, Taylor WR, Walker JH: Structures and functions of a supergene family of calcium and phospholipid binding proteins. Prog Clin Biol Res 349: 111–121, 1990

    PubMed  Google Scholar 

  2. Johnsson N, Gerke V, Weber K: P36, member of the Ca2+/lipid binding proteins (annexins, calpactins, lipocortins) and its complex with P11; molecular aspects. Prog Clin Biol Res 349: 123–133, 1990

    PubMed  Google Scholar 

  3. Burgoyne RD, Geisow MJ: The annexin family of calcium-binding proteins. Cell Calcium 10: 1–10, 1989

    PubMed  Google Scholar 

  4. Gerke V: Tyrosine protein kinase substrate p36: a member of the annexin family of Ca2+/phospholipid-binding proteins. Cell Motil Cytoskeleton 14: 449–454, 1989

    PubMed  Google Scholar 

  5. Crompton MR, Moss SE, Crumpton MJ: Diversity in the lipocortin/ calpactin family. Cell 55: 1–3, 1988

    PubMed  Google Scholar 

  6. Klee CB: Ca2+-dependent phospholipid- (and membrane-) binding proteins. Biochemistry 27: 6645–6653, 1988

    PubMed  Google Scholar 

  7. Tokuda M, Waisman DM, Hatase O: [Lipocortin-a Ca2+-binding proproteins. which has anti-phospholipase A2 activity]. Seikagaku 60: 26–31, 1988

    PubMed  Google Scholar 

  8. Smith, V. L. and Dedman, J. R. The Role of Intracellular Calciumbinding Proteins in Stimulus-response Coupling. Smith, V. L. and Dedman, J. R. eds) Stimulus Response coupling; The Role of Intracellular Calcium-binding Proteins. CRC Press, Boca Raton, 1990, pp 1–19.

    Google Scholar 

  9. Raynal P, Pollard HB: Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta 1197: 63–93, 1994.

    PubMed  Google Scholar 

  10. Bandorowicz J, Pikula S: Annexins-multifunctional, calcium-dependent, phospholipid-binding proteins. Acta Biochim Pol 40: 281–293, 1993

    PubMed  Google Scholar 

  11. Swairjo MA, Seaton BA: Annexin Structure and Membrane Interactions: A Molecular Perspective. Ann Rev Biophys Biomol Struct 23: 193–213, 1994

    Google Scholar 

  12. Geisow MJ: Common domain structure of Ca2+ and lipid-binding proteins. FEBS Lett 203: 99–103, 1986

    PubMed  Google Scholar 

  13. Geisow MJ, Fritsche U, Hexham JM, Dash B, Johnson T: A consensus animo-acid sequence repeat in Torpedo and mammalian Ca2+-dependent membrane-binding proteins. Nature 320: 636–638, 1986

    PubMed  Google Scholar 

  14. Crumpton MJ, Dedman JR: Protein terminology tangle [letter] [see comments]. Nature 345: 212-1990

    PubMed  Google Scholar 

  15. Creutz CE, Dowling LG, Sando JJ, Villar-Palasi C, Whipple JH, Zaks WJ: Characterization of the chromobindins. Soluble proteins that bind to the chromaffin granule membrane in the presence of Ca2+. J Biol Chem 258: 14664–14674, 1983

    PubMed  Google Scholar 

  16. Emans N, Gorvel JP, Walter C, Gerke V, Kellner R, Griffiths G, Gruenberg J: Annexin II is a major component of fusogenic endosomal vesicles. J Cell Biol 120: 1357–1369, 1993

    PubMed  Google Scholar 

  17. Burgoyne RD, Morgan A, Roth D: Characterization of proteins that regulate calcium-dependent exocytosis in adrenal chromaffin cells. Ann NY Acad Sci 710: 333–346, 1994

    PubMed  Google Scholar 

  18. Morgan A, Roth D, Martin H, Aitken A, Burgoyne RD: Identification of cytosolic protein regulators of exocytosis. Biochem Soc Trans 21: 401–405, 1993

    PubMed  Google Scholar 

  19. Saraffan T, Pradel LA, Henry JP, Aunis D, Bader MF: The participation of annexin II (calpactin I) in calcium-evoked exocytosis requires protein kinase C. J Cell Biol 114: 1135–1147, 1991

    PubMed  Google Scholar 

  20. Wu YN, Wagner PD: Calpactin-depleted cytosolic proteins restore Ca(2+)-dependent secretion to digitonin-permeabilized bovine chromaffin cells. FEBS Lett 282: 197–199, 1991

    PubMed  Google Scholar 

  21. Ali SM, Burgoyne RD: The stimulatory effect of calpactin (annexin II) on calcium-dependent exocytosis in chromaffin cells: requirement for both the N-terminal and core domains of p36 and ATP. Cell Signal 2: 265–276, 1990

    PubMed  Google Scholar 

  22. All SM, Geisow MJ, Burgoyne RD: A role for calpactin in calciumdependent exocytosis in adrenal chromaffin cells. Nature 340: 313–315, 1989

    PubMed  Google Scholar 

  23. Creutz CE: The annexins and exocytosis. Science 258: 924–931, 1992

    PubMed  Google Scholar 

  24. Burgoyne RD, Morgan A, Robinson I, Pender N, Cheek TR: Exocytosis in adrenal chromaffin cells. J Anat 183: 309–314, 1993

    PubMed  Google Scholar 

  25. Berendes R, Burger A, Voges D, Demange P, Huber R: Calcium influx through annexin V ion channels into large unilamellar vesicles measured with fura-2. FEBS Lett 317: 131–134, 1993

    PubMed  Google Scholar 

  26. Burger A, Voges D, Demange P, Perez CR, Huber R, Berendes R: Structural and electrophysiological analysis of annexin V mutants. Mutagenesis of human annexin V, anin vitro voltage-gated calcium channel, provides inforamtion about the structural features of the ion pathway, the voltage sensor and the ion selectivity filter. J Mol Biol 237: 479–499, 1994

    PubMed  Google Scholar 

  27. Rojas E, Arispe N, Haigler HT, Burns AL, Pollard HB: Identification of annexins as calcium channels in biological membranes. Bone Miner 17: 214–218, 1992

    PubMed  Google Scholar 

  28. Pollard HB, Guy HR, Arispe N, de-la-Fuente M, Lee G, Rojas EM, Pollard JR, Srivastava M, Zhang-Keck ZY, Merezhinskaya N, et al.: Calcium channel and membrane fusion activity of synexin and other members of the Annexin gene family. Biophys J: 62: 15–18, 1992

    PubMed  Google Scholar 

  29. Jones PG, Fitzpatrick S, Waisman DM: Chromaffin Granules Release Calcium on Contact With Annexin VI: Implications for Exocytosis. Biochemistry 33: 8180–8187, 1994

    PubMed  Google Scholar 

  30. Khanna NC, Hee-Chong M, Severson DL, Tokuda M, Chong SM, Waisman DM: Inhibition of phospholipase A2 by protein I. Biochem Biophys Res Commun 139: 455–460, 1986

    PubMed  Google Scholar 

  31. Khanna NC, Tokuda M, Waisman DM: Purification of three forms of lipocortin from bovine lung. Cell Calcium 8: 217–228, 1987

    PubMed  Google Scholar 

  32. Huang KS, McGray P, Mattaliano RJ, Burne C, Chow EP, Sinclair LK, Pepinsky RB: Purification and characterization of proteolytic fragments of lipocortin I that inhibit phospholipase A2. J Biol Chem 262: 7639–7645, 1987

    PubMed  Google Scholar 

  33. Bastian BC, Sellert C, Seekamp A, Romisch J, Paques EP, Brocker EB: In'nibition of human skin phospholipase A2 by ‘lipocortins’ is an indirect effect of substrate/lipocortin interaction. J Invest Dermatol 101: 359–363, 1993

    PubMed  Google Scholar 

  34. Cirino G, Cicala C, Sorrentino L, Ciliberto G, Arpaia G, Perretti M, Flower RJ: Anti-inflammatory actions of an N-terminal peptide from human lipocortin 1. Br J Pharmacol 108: 573–574, 1993

    PubMed  Google Scholar 

  35. Hayashi J, Liu P, Ferguson SE, Wen M, Sakata T, Teraoka H, Riley HD: Arachidonic acid metabolism in cells transfected with sense and anti-sense cDNA to annexin I. Biochem Mol Biol Int31: 143–151, 1993

    PubMed  Google Scholar 

  36. Bohn E, Gerke V, Kresse H, Loffler BM, Kunze H: Annexin II inhibits calcium-dependent phospholipase A1 and lysophospholipase but not triacyl glycerol lipase activities of rat liver hepatic lipase. FEBS Lett 296: 237–240, 1992

    PubMed  Google Scholar 

  37. Buhl WJ: Annexins and phospholipase A2 inhibition. Eicosanoids 5 Suppl: S26-S28, 1992

    PubMed  Google Scholar 

  38. Sun J, Bird P, Salem HH: Interaction of annexin V and platelets: effects on platelet function and protein S binding. Thromb Res 69: 289–296, 1993

    PubMed  Google Scholar 

  39. Chollet P, Malecaze F, Hullin F, Raynal P, Arne JL, Pagot V, Ragab-Thomas J, Chap H: Inhibition of intraocular fibrin formation with annexin V. Br J Ophthalmol 76: 450–452, 1992

    PubMed  Google Scholar 

  40. Kondo S, Noguchi M, Funakoshi T, Fujikawa K, Kisiel W: Inhibition of human factor VIIa-tissue factor activity by placental anticoagulant protein. Thromb Res 48: 449–459, 1987

    PubMed  Google Scholar 

  41. Cirino G, Cicala C: Human recombinant lipocortin 1 (annexin 1) has anticoagulant activity on human plasmain vitro. J Lipid Mediat 8: 81–86, 1993

    PubMed  Google Scholar 

  42. Sun J, Bird P, Salem HH: Effects of annexin V on the activity of the anticoagulant proteins C and S. Thromb Res 69: 279–287, 1993

    PubMed  Google Scholar 

  43. Andree HA, Stuart MC, Hermens WT, Reutelingsperger CP, Hemker HC, Frederik PM, Willems GM: Clustering of lipid-bound annexin V may explain its anticoagulant effect. J Biol Chem 267: 17907–17912, 1992

    PubMed  Google Scholar 

  44. Ohyama N: [Effect of coagulation inhibitor proteins (Calphobindins) on tissue factor expression of endothelial cells]. Nippon Sanka Fujinka Gakkai Zasshi 44: 1119–1126, 1992

    PubMed  Google Scholar 

  45. Sammaritano LR, Gharavi AE, Soberano C, Levy RA, Lockshin MD: Phospholipid binding of antiphospholipid antibodies and placental anticoagulant protein. J Clin Immunol 12: 27–35, 1992

    PubMed  Google Scholar 

  46. Yoshizaki H, Arai K, Mizoguchi T, Shiratsuchi M, Hattori Y, Nagoya T, Shidara Y, Maki M: Isolation and characterization of an anticoagulant protein from human placenta. J Biochem Tokyo 105: 178–183, 1989

    PubMed  Google Scholar 

  47. Rothhut B, Comera C, Cortial S, Haumont PY, Diep-Le KH, Cavadore JC, Conard J, Russo-Marie F, Lederer F: A 32 kDa lipocortin from human mononuclear cells appears to be identical with the placental inhibitor of blood coagulation. Biochem J 263: 929–935, 1989

    PubMed  Google Scholar 

  48. Thiagarajan P, Tait JF: Binding of anexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets. J Biol Chem 265: 17420–17423, 1990

    PubMed  Google Scholar 

  49. Romisch J, Seiffge D, Reiner G, Paques EP, Heimburger N:In vivo antithrombotic potency of placenta protein 4 (annexin V). Thromb Res 61: 93–104, 1991

    PubMed  Google Scholar 

  50. Romisch J, Schorlemmer U, Fickenscher K, Paques EP, Heimburger N: Anticoagulant properties of placenta protein 4 (annexin V). Thromb Res 60: 355–366, 1990

    PubMed  Google Scholar 

  51. Vishwanatha JK, Jindal HK, Davis RG: The role of primer recognition proteins in DNA replication: association with nuclear matrix in HeLa cells. J Cell Sci 101: 25–34, 1992

    PubMed  Google Scholar 

  52. Braslau DL, Ringo DL, Rocha V: Synthesis of novel calcium-dependent proteins associated with mammary epithelial cell migration and differentiation. Exp Cell Res 155: 213–221, 1984

    PubMed  Google Scholar 

  53. Keutzer JC, Hirschhorn RR: The growth-regulated gene 1B6 is identified as the heavy chain of calpactin I. Exp Cell Res 188: 153–159, 1990

    PubMed  Google Scholar 

  54. Croxtall JD, Pollard JW, Carey F, Forder RA, White JO: Colony stimulating factor-1 stimulates Ishikawa cell proliferation and lipocortin II synthesis. J Steroid Biochem Mol Biol 42: 121–129, 1992

    PubMed  Google Scholar 

  55. Masiakowski P, Shooter EM: Nerve growth factor induces the genes for two proteins related to a family of calcium-binding proteins in PC12 cells. Proc Natl Acad Sci U S A 85: 1277–1281, 1988

    PubMed  Google Scholar 

  56. Lozano JJ, Silberstein GB, Hwang S, Haindl AH, Rocha V: Developmental regulation of calcium-binding proteins (calelectrins and calpactin I) in mammary glands. J Cell Physiol 138: 503–510, 1989

    PubMed  Google Scholar 

  57. William F, Mcroczkowski B, Cohen S, Kraft AS: Differentiation of HL-60 cells is associated with an increase in the 35-kDa protein lipocortin I. J Cell Physiol 137: 402–410, 1988

    PubMed  Google Scholar 

  58. Fox MT, Prentice DA, Hughes JP: Increases in pll and annexin II proteins correlate with differentiation in the PC12 pheochromocytoma. Biochem Biophys Res Commun 177: 1188–1193, 1991

    PubMed  Google Scholar 

  59. Hofmann C, Gropp R, von-der-Mark K: Expression of anchorin CII, a collagen-binding protein of the annexin family, in the developing chick embryo. Dev Biol 151: 391–400, 1992

    PubMed  Google Scholar 

  60. Harder T, Thiel C, Gerke V: Formationof the annexin II2pll2 complex upon differentiation of F9 teratocarcinoma cells. J Cell Sci 104: 1109–1117, 1993

    PubMed  Google Scholar 

  61. Leung MF, Lin TS, Sartorelli AC: Changes in actin and actin-binding proteins during the differentiation of HL-60 leukemia cells. Cancer Res 52: 3063–3066, 1992

    PubMed  Google Scholar 

  62. Croxtall JD, Pollard JW, Carey F, Forder RA, White JO: Colony stimulating factor-1 stimulates Ishikawa cell proliferation and lipocortin II synthesis. J Steroid Biochem Mol Biol 42: 121–129, 1992

    PubMed  Google Scholar 

  63. Pfaffle M, Ruggiero F, Hofmann H, Fernandez MP, Selmin O, Yamada Y, Garrone R, von-der-Mark K: Biosynthesis, secretion and extracellular localization of anchorin CII, a collagen-binding protein of the calpactin family. EMBO J 7: 2335–2342, 1988

    PubMed  Google Scholar 

  64. Wuthier RE: Involvement of cellular metabolism of calcium and phosphate in calciffication of avian growth plate cartilage. J Nutr 123: 301–309, 1993

    PubMed  Google Scholar 

  65. Genge BR, Cao X, Wu LN, Buzzi WR, Showman RW, Arsenault AL, Ishikawa Y, Wuthier RE: Establishment of the primary structure of the major lipid-dependent Ca2+ binding proteins of chicken growth plate cartilage matrix vesicles: identity with anchorin CII (annexin V) and annexin II. J Bone Miner Res 7: 807–819, 1992

    PubMed  Google Scholar 

  66. Kirsch T, Pfaffle M: Selective binding of anchorin CII (annexin V) to type II and X collagen and to chondrocalcin (C-propeptide of type II collagen). Implications for anchoring function between matrix vesicles and matrix proteins. FEBS Lett 310: 143–147, 1992

    PubMed  Google Scholar 

  67. Wu LN, Genge BR, Lloyd GC, Wuthier RE: Collagen-binding protein in collagenase-released matrix vesicles from cartilage. Interaction between matrix vesicle proteins and different types of collagen. J Biol Chem 266: 1195–1203, 1991

    PubMed  Google Scholar 

  68. Pfaffle M, Borchert M, Deutzmann R, von-der-Mark K, Fernandez MP, Selmin O, Yamada Y, Martin G, Ruggiero F, Garrone R: Anchorin CII, a collagen-binding chondrocyte surface protein of the calpactin family. Prog Clin Biol Res 349: 147–157, 1990

    PubMed  Google Scholar 

  69. Wirl G, Schwartz-Albiez R: Collagen-binding proteins of mammary epithelial cells are related to Ca2(+)-and phospholipid-binding annexins. J Cell Physiol 144: 511–522, 1990

    PubMed  Google Scholar 

  70. Yeatman TJ, Updyke TV, Kaetzel MA, Dedman JR, Nicolson GL: Expression of annexins on the surfaces of non-metastatic and metastatic human and rodent tumor cells. Clin Exp Metastasis 11: 37–44, 1993

    PubMed  Google Scholar 

  71. Tressler RJ, Updyke TV, Yeatman T, Nicolson GL: Extracellular annexin II is associated with divalent cation-dependent tumor cell-endothelial cell adhesion of metastatic RAW 117 large-cell lymphoma cells. J Cell Biochem 53: 265–276, 1993

    PubMed  Google Scholar 

  72. Tressler RJ, Nicolson GL: Butanol-extractable and detergent-solubilized cell surface components from murine large cell lymphoma cells associated with adhesion to organ microvessel endothelial cells. J Cell Biochem 48: 162–171, 1992

    PubMed  Google Scholar 

  73. Jindal HK, Chaney WG, Anderson CW, Davis RG, Vishwanatha JK: The protein-tyrosine kinase substrate, calpactin I heavy chain (p36), is part of the primer recognition protein complex that interacts with DNA polymerase α. J Biol Chem 266: 5169–5176, 1991

    PubMed  Google Scholar 

  74. Gerke V, Weber K: Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders; calcium-dependent binding to non-erythroid spectrin and F-actin. EMBO J 3: 227–233, 1984

    PubMed  Google Scholar 

  75. Erikson E, Tomasiewicz HG, Erikson RL: Biochemical characterization of a 34-kilodalton normal cellular substrate of pp60v-src and an associated 6-kilodalton protein. Mol Cell Biol 4: 77–85, 1984

    PubMed  Google Scholar 

  76. Glenney J: Two related but distinct forms of the Mr 36,000 tyrosine kinase substrate (calpactin) that interact with phospholipid and actin in a Ca2+-dependent manner. Proc Natl Acad Sci U S A 83: 4258–4262, 1986

    PubMed  Google Scholar 

  77. Vishwanatha JK, Kumble S: Involvement of annexin II in DNA replication: Evidence from cell-free extracts ofXenopus eggs. J Cell Sci 105: 533–540, 1993

    PubMed  Google Scholar 

  78. Kumble KD, Iversen PL, Vishwanatha JK: The role of primer recognition proteins in DNA replication: inhibition of cellular proliferation by antisense oligodeoxyribonucleotides. J Cell Sci 101: 35–41, 1992

    PubMed  Google Scholar 

  79. Thiel C, Osborn M, Gerke V: The tight association of the tyrosine kinase substrate annexin II with the submembranous cytoskeleton depends on intact p 11-and Ca(2+)-binding sites. J Cell Sci 103: 733–742, 1992

    PubMed  Google Scholar 

  80. Chiang Y, Schneiderman MH, Vishwanatha JK: Annexin II expression is regulated during mammalian cell cycle. Cancer Res 53: 6017–6021, 1993

    PubMed  Google Scholar 

  81. Roth D, Morgan A, Burgoyne RD: Identification of a key domain in annexin and 14-3-3 proteins that stimulate calcium-dependent exocytosis in permeabilized adrenal chromaffin cells. FEBS Lett 320: 207–210, 1993

    PubMed  Google Scholar 

  82. Burgoyne RD: Calpactin in exocytosis [news]. Nature 331: 20, 1988

    PubMed  Google Scholar 

  83. Gruenberg J, Emans N: Annexins in membrane traffic. Trends Cell Biol 3: 224–227, 1993

    PubMed  Google Scholar 

  84. Robitzki A, Schroder HC, Ugarkovic D, Gramzow M, Fritsche U, Batel R, Muller WE: cDNA structure and expression of calpactin, a peptide involved in Ca2(+)-dependent cell aggregation in sponges. Biochem J 271: 415–420, 1990

    PubMed  Google Scholar 

  85. Nakata T, Sobue K, Hirokawa N: Conformational change and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze, deep-etch electron microscopy and immunocytochemistry. J Cell Biol 110: 13–25, 1990

    PubMed  Google Scholar 

  86. Senda T, Okabe T, Matsuda M, Fujita H: Quick-freeze, deep-etch visualization of exocytosis in anterior pituitary secretory cells: localization and possible roles of actin and annexin II. Cell Tissue Res 277: 51–60, 1964

    Google Scholar 

  87. Hubaishy I, Jones PG, Bjorge J, Bellagamba C, Fitzpatrick S, Fujita DJ, Waisman DM: Modulation of Annexin II Tetramer By Tyrosine Phosphorylation. J Biol Chem submitted, 1995

  88. Ikebuchi NW, Waisman DM: Calcium-dependent regulation of actin filament bundling by lipocortin-85. J Biol Chem 265: 3392–3400, 1990

    PubMed  Google Scholar 

  89. Glenney JR, Jr., Glenney P: Comparison of Ca++-regulated events in the intestinal brush border. J Cell Biol 100: 754–763, 1985

    PubMed  Google Scholar 

  90. Regnouf F, Rendon A, Pradel LA: Biochemical characterization of annexins I and II isolated from pig nervous tissue. J Neurochem 56: 1985–1996, 1991

    PubMed  Google Scholar 

  91. Jones PG, Moore GJ, Waisman DM: A nonapeptide to the putative F-actin binding site of annexin-II tetramer inhibits its calcium-dependent activation of actin filament bundling. J Biol Chem 267: 13993–13997, 1992

    PubMed  Google Scholar 

  92. Glenney JR, Jr. Phosphorylation of p36in vitro with pp60src. Regulation by Ca2+ and phospholipid. FEBS Lett 192: 79–82, 1985

    PubMed  Google Scholar 

  93. Glenney J: Phospholipid-dependent Ca2+ binding by the 36-kDa tyrosine kinase substrate (calpactin) and its 33-kDa core. J Biol Chem 261: 7247–7252, 1986

    PubMed  Google Scholar 

  94. Johnstone SA, Hubaishy I, Waisman DM: Phosphorylation of annexin II tetramer by protein kinase C inhibits aggregation of lipid vesicles by the protein. J Biol Chem 267: 25976–25981, 1992

    PubMed  Google Scholar 

  95. Jones PG, Fitzpatrick S, Waisman DM: Salt-dependency of chromaffin granule aggregation by annexin II Tetramer. Biochemistry 33: 13751–13760, 1994

    PubMed  Google Scholar 

  96. Weber K, Johnsson N, Plessmann U, Van PN, Soling HD, Ampe C, Vandekerckhove J: The amino acid sequence of protein II and its phosphorylation site for protein kinase C; the domain structure Ca2+-modulated lipid binding proteins. EMBO J 6: 1599–1604, 1987

    PubMed  Google Scholar 

  97. Johnsson N, Nguyen-Van P, Soling HD, Weber K: Functionally distinct serine phosphorylation sites of p36, the cellular substrate of retroviral protein kinase; differential inhibition of reassociation with pll. EMBO J 5: 3455–3460, 1986

    PubMed  Google Scholar 

  98. Glenney JR, Jr., Tack BF: Amino-terminal sequence of p36 and associated p 10: identification of the site of tyrosine phosphorylation and homology with S-100. Proc Natl Acad Sci U S A 82: 7884–7888, 1985

    PubMed  Google Scholar 

  99. Gould KL, Woodgett JR, Isacke CM, Hunter T: The protein-tyrosine kinase substrate p36 is also a substrate for protein kinase Cin vitro andin vivo. Mol Cell Biol 6: 2738–2744, 1986

    PubMed  Google Scholar 

  100. Schlaepfer DD, Haigler HT:In vitro protein kinase C phosphorylation sites of placental lipocortin. Biochemistry 27: 4253–4258, 1988

    PubMed  Google Scholar 

  101. Glenney JR, Jr., Boudreau M, Galyean R, Hunter T, Tack B: Association of the S-100-related calpactin I light chain with the NH2-terminal tail of the 36 kDa heavy chain. J Biol Chem 261: 10485–10488, 1986

    PubMed  Google Scholar 

  102. Johnsson N, Marriott G, Weber K: p36, the major cytoplasmic substrate of src tyrosine protein kinase, binds to its p11 regulatory subunit via a short amino-terminal amphiphatic helix. EMBO J 7: 2435–2442, 1988

    PubMed  Google Scholar 

  103. Johnsson N, Vandekerckhove J, Van-Damme J, Weber K: Binding sites for calcium, lipid and pll on p36, the substrate of retroviral tyrosine-specific protein kinases. FEBS Lett 198: 361–364, 1986

    PubMed  Google Scholar 

  104. Glenney JR, Jr., Tack B, Powell MA: Calpactins: two distinct Ca++-regulated phospholipid-and actin-binding proteins isolated from lung and placenta. J Cell Biol 104: 503–511, 1987

    PubMed  Google Scholar 

  105. Drust DS, Creutz CE: Aggregation of chromaffin granules by calpactin at micromolar levels of calcium. Nature 331: 88–91, 1988

    PubMed  Google Scholar 

  106. Powell MA, Glenney JR: Regulation of calpactin I phospholipid binding by calpactin I light-chain binding and phosphorylation by p60v-src. Biochem J 247: 321–328, 1987

    PubMed  Google Scholar 

  107. Ikebuchi, N. W. and Waisman, D. M. Lipocortin-II Tetramer: A calcium-dependent regulator of actin filament bundling. In: V.L. Smith, J.R. Dedman (eds) Stimulus Response Coupling: The Role of Intracellular Calcium-Binding Proteins. CRC Press, Roca Raton, 1990, pp 357–381

    Google Scholar 

  108. Gerke V, Weber K: Calcium-dependent conformational changes in the 36-kDa subunit of intestinal protein I related to the cellular 36 kDa target of Rous sarcoma virus tyrosine kinase. J Biol Chem 260: 1688–1695, 1985

    PubMed  Google Scholar 

  109. Pigault C, Follenius-Wund A, Lux B, Gerard D: A fluorescence spectroscopy study of the calpactin I complex and its subunits p11 and p36: calcium-dependent conformation changes. Biochim Biophys Acta 1037: 106–114, 1990

    PubMed  Google Scholar 

  110. Blackwood RA, Ernst JD: Characterization of Ca2(+)-dependent phospholipid binding, vesicle aggregation and membrane fusion by annexins. Biochem J 266: 195–200, 1990

    PubMed  Google Scholar 

  111. Evans TC, Nelsestuen GL: Calcium and membrane-binding properties of monomeric and multimeric annexin II. Biochemistry 33: 13231–13238, 1994

    PubMed  Google Scholar 

  112. Osborn M, Johnsson N, Wehland J, Weber K: The submembranous location of p11 and its interaction with the p36 substrate of pp60 src kinase in situ. Exp Cell Res 175: 81–96, 1988

    PubMed  Google Scholar 

  113. Zokas L, Glenney JR, Jr., The calpactin light chain is tightly linked to the cytoskeletal form of calpactin I: studies using monoclonal antibodies to calpactin subunits. J Cell Biol 105: 2111–2121, 1987

    PubMed  Google Scholar 

  114. Drust DS, Creutz CE: Differential subcellular distribution of p36 (the heavy chain of calpactin I) and other annexins in the adrenal medulla. J Neurochem 56: 469–478, 1991

    PubMed  Google Scholar 

  115. Gould KL, Cooper JA, Hunter T: The 46,000-dalton tyrosine protein kinase substrate is widespread, whereas the 36,000-dalton substrate is only expressed at high levels in certain rodent tissues. J Cell Biol 98: 487–497, 1984

    PubMed  Google Scholar 

  116. Amini S, Kaji A: Association of pp36, a phosphorylated form of the presumed target protein for the src protein of Rous sarcoma virus, with the membrane of chicken cells transformed by Rous sarcoma virus. Proc Natl Acad Sci USA 80: 960–964, 1983

    PubMed  Google Scholar 

  117. Courtneidge S, Ralston R, Alitalo K, Bishop JM: Subcellular location of an abundant substrate (p36) for tyrosine-specific protein kinases. Mol Cell Biol 3: 340–350, 1983

    PubMed  Google Scholar 

  118. Greenberg ME, Edelman GM: The 34 kd pp60src substrate is located at the inner face of the plasma membrane. Cell 33: 767–779, 1983

    PubMed  Google Scholar 

  119. Nigg EA, Cooper JA, Hunter T: Immunofluorescent localization of a 39,000-dalton substrate of tyrosine protein kinsases to the cytoplasmic surface of the plasma membrane. J Cell Biol 96: 1601–1609, 1983

    PubMed  Google Scholar 

  120. Cooper JA, Hunter T: Discrete primary locations of a tyrosine protein kinase and of three proteins that contain phosphoryrosine in virally transformed chick fibroblasts. J Cell Biol 94: 287–296, 1982

    PubMed  Google Scholar 

  121. Cheng Y-SE, Chen LB: Detection of phosphotyrosine containing 34,000 dalton protein in the framework of cells transformed with Rous sarcoma virus. Proc Natl Acad Sci U S A 78: 2388–2392, 1981

    PubMed  Google Scholar 

  122. Concha NO, Head JF, Kaetzel MA, Dedman JR, Seaton BA: Rat annexin V crystal structure: Ca(2+)-induced conformational changes. Science 261: 1321–1324, 1993

    PubMed  Google Scholar 

  123. Sopkova J, Renouard M, Lewit Bentley A: The crystal structure of a new high-calcium form of annexin V. J Mol Biol 234: 816–825, 1993

    PubMed  Google Scholar 

  124. Weng X, Luecke H, Song IS, Kang DS, Kim SH, Huber R: Crystal structure of human annexin I at 2.5 A resolution. Protein Sci 2: 448–458, 1993

    PubMed  Google Scholar 

  125. Huber R, Berendes R, Burger A, Schneider M, Karshikov A, Luecke H, Romisch J, Paques E: Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins. J Mol Biol 223: 683–704, 1992

    PubMed  Google Scholar 

  126. Huber R, Berendes R, Burger A, Luecke H, Karshikov A: Annexin V-crystal structure and its implications on function. Behring Inst Mitt 107–125, 1992

  127. Lewit Bentley A, Morera S, Huber R, Bodo G: The effect of metal binding on the structure of annexin V and implications for membrane binding. Eur J Biochem 210: 73–77, 1992

    PubMed  Google Scholar 

  128. Brisson A, Mosser G, Huber R: Structure of soluble and membrane-bound human annexin V. J Mol Biol 220: 199–203, 1991

    PubMed  Google Scholar 

  129. Huber R, Romisch J, Paques EP: The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. EMBO J 9: 3867–3874, 1990

    PubMed  Google Scholar 

  130. Huber R, Schneider M, Mayr I, Romisch J, Paques EP: The calcium binding sites in human annexin V by crystal structure analysis at 2.0 A resolution. Implications for membrane binding and calcium channel activity. FEBS Lett 275: 15–21, 1990

    PubMed  Google Scholar 

  131. Jost M, Weber K, Gerke V: Annexin II contains two types of Ca(2+)-binding sites. Biochem J 298 Pt 3: 553–559, 1994

    PubMed  Google Scholar 

  132. Jost M, Thiel C, Weber K, Gerke V: Mapping of three unique Ca(2+)-binding sites in human annexin II. Eur J Biochem 207: 923–930, 1992

    PubMed  Google Scholar 

  133. Greenberg ME, Brackenbury R, Edelman GM: Changes in the distribution of the 34-kdalton tyrosine kinase substrate during differentiation and maturation of chicken tissues. J Cell Biol 98: 473–486 1984

    PubMed  Google Scholar 

  134. Pepinsky RB, Tizard R, Mattaliano RJ, Sinclair LK, Miller GT, Browning JL Chow EP, Burne C, Huang KS, Pratt D et al.: Five distinct calcium and phospholipid binding proteins share homology with lipocortin I. J Biol Chem 263: 10799–10811, 1988

    PubMed  Google Scholar 

  135. Geisow M, Childs J, Dash B, Harris A, Panayotou G, Sudhof T, Walker JH: Cellular distribution of three mammalian Ca2+-binding proteins related to Torpedo calelectrin. EMBO J 3: 2969–2974, 1984

    PubMed  Google Scholar 

  136. Eberhard DA, Brown MD, VandenBerg SR: Alterations of annexin expression in pathological neuronal and glial reactions. Immunohistochemical localization of annexins I, II (p36 and p11 subunits), IV, and VI in the human hippocampus. Am J Path 145: 640–649, 1994

    PubMed  Google Scholar 

  137. Reeves SA, Chavez Kappel C, Davis R, Rosenblum M, Israel MA: Developmental regulation of annexin II (Lipocortin 2) in human brain and expression in high grade glioma. Cancer Res 52: 6871–6876, 1992

    PubMed  Google Scholar 

  138. Burgoyne RD, Cambray Deakin MA, Norman KM: Developmental regulation of tyrosine kinase substrate p 36 (calpactin heavy chain) in rat cerebellum. J Mol Neurosci 1: 47–54, 1989

    PubMed  Google Scholar 

  139. Carter C, Howlett AR, Martin GS, Bissell MJ: The tyrosine phosphorylation substrate p36 is developmentally regulated in embryonic avian limb and is induced in cell culture. J Cell Biol 103: 2017–2024, 1986

    PubMed  Google Scholar 

  140. Ohnishi M, Tokuda M, Masaki T, Fujimura T, Tai Y, Matsui H, Itano T, Ishida T, Takahara J, Konishi R, Hatase O: Changes in annexin I and II levels during the postnatal development of rat pancreatic islets. J Cell Sci 107: 2117–2125, 1994

    PubMed  Google Scholar 

  141. Masaki T, Tokuda M, Fujimura T, Ohnishi M, Tai Y, Miyamoto K, Itano T, Matsui H, Watanabe S, Sogawa K, Yamada T, Konishi R, Nishioka M, Hatase O: Involvement of annexin I and annexin II in hepatocyte proliferation: can annexins I and II be markers for proliferative hepatocytes? Hepatology 20: 425–435, 1994

    PubMed  Google Scholar 

  142. Saris CJ, Kristensen T, D'Eustachio P, Hicks LJ, Noonan DJ, Hunter T, Tack BF: cDNA sequence and tissue distribution of the mRNA for bovine and murine p 11, the S100-related light chain of the protein-tyrosine kinase substrate p36 (calpactin I). J Biol Chem 262: 10663–10671, 1987

    PubMed  Google Scholar 

  143. Ernst JD, Mall A, Chew G: Annexins possess functionally distinguishable Ca2+ and phospholipid binding domains. Biochem Biophys Res Commun 200: 867–876, 1994

    PubMed  Google Scholar 

  144. Trave G, Quignard JF, Lionne C, Sri Widada J, Liautard JP: Interdependence of phospholipid specificity and calcium binding in annexin I as shown by site-directed mutagenesis. Biochim Biophys Acta 1205: 215–222, 1994

    PubMed  Google Scholar 

  145. Meers P, Daleke D, Hong K, Papahadjopoulos D: Interactions of annexins with membrane phospholipids. Biochemistry 30: 2903–2908, 1991

    PubMed  Google Scholar 

  146. Genge BR, Wu LN, Wuthier RE: Differential fractionation of matrix vesicle proteins. Further characterization of the acidic phospholipid-dependent Ca2(+)-binding proteins. J Biol Chem 265: 4703–4710 1990

    PubMed  Google Scholar 

  147. Walker JH: Isolation from cholinergic synapses of a protein that binds to membranes in a Ca21-dependent manner. J Neurochem 39: 815–823, 1982

    PubMed  Google Scholar 

  148. Pollard HB, Rojas E: Ca2+-activated synexin forms highly selective, voltage-gated Ca2+ channels in phosphatidylserine bilayer membranes. Proc Natl Acad Sci U S A 85: 2974–2978, 1988

    PubMed  Google Scholar 

  149. Pollard HB, Burns AL, Rojas E: Synexin, a new member of the annexin gene family, is a calcium channel and membrane fusion protein. Prog Clin Biol Res 349: 159–172, 1990

    PubMed  Google Scholar 

  150. Rojas E, Pollard HB, Haigler HT, Parra C, Burns AL: Calcium-activated endonexin I1 forms calcium channels across acidic phospholipid bilayer membranes. J Biol Chem 265: 21207–21215, 1990

    PubMed  Google Scholar 

  151. Zaks WJ, Creutz CE: Annexin-chromaffin granule membrane interactions: a comparative study of synexin, p32 and p67. Biochim Biophys Acta 1029: 149–160, 1990

    PubMed  Google Scholar 

  152. Andree HA, Willems GM, Hauptmann R, Maurer Fogy I, Stuart MC, Hermens WT, Frederik PM, Reutelingsperger CP: Aggregation of phospholipid vesicles by a chimeric protein with the N-terminus of annexin I and the core of annexin V. Biochemistry 32: 4634–4640, 1993

    PubMed  Google Scholar 

  153. Sargiacomo M, Sudol M, Tang Z, Lisanti MP: Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 122: 789–807, 1993

    PubMed  Google Scholar 

  154. Martin F, Derancourt J, Capony JP, Watrin A, Cavadore JC: A 36 kDA monomeric protein and its complex with a 10 kDa protein both isolated from bovine aorta are calpactin-like proteins that differ in their Ca2+-dependent calmodulin-binding and actin-severing properties. Biochem J 251: 777–785, 1988

    PubMed  Google Scholar 

  155. Ma AS, Bystol ME, Tranvan A:In vitro modulation of filament bundling in F-actin and keratins by annexin II and calcium.In vitro Cell Develop Biol Animal: 329–335, 1994

  156. Suzuki R, Morita F, Nishi N, Tokura S: Inhibition of actomyosin subfragment 1 ATPase activity by analog peptides of the actin-binding site around the Cys(SH1) of myosin heavy chain. J Biol Chem 256: 4939–4943, 1990

    Google Scholar 

  157. Khanna NC, Helwig ED, Ikebuchi NW, Fitzpatrick S, Bajwa R, Waisman DW: Purification and characterization of annexin proteins from bovine lung. Biochem 29: 4852–4862, 1990

    Google Scholar 

  158. Kojima K, Ogawa HK, Seno N, Yamamoto K, Irimura T, Osawa T, Matsumoto I: Carbohydrate-binding proteins in bovine kidney have consensus amino acid sequences of annexin family proteins. J Biol Chem 267: 20536–20539, 1992

    PubMed  Google Scholar 

  159. Khanna NC, Tokuda M, Waisman DM: Phosphorylation of lipocortinsin vitro by protein kinase C. Biochem Biophys Res Commun 141: 547–554, 1986

    PubMed  Google Scholar 

  160. Radke K, Martin GS: Transformation by Rous sarcoma virus: effects of src gene expression on the synthesis and phosphorylation of cellular polypeptides. Proc Natl Acad Sci U S A 76: 5212–5216, 1979

    PubMed  Google Scholar 

  161. Erikson E, Erikson RL: Identification of a cellular protein substrate phosphorylated by the avian sarcoma virus-transforming gene product. Cell 21: 829–836, 1980

    PubMed  Google Scholar 

  162. Martinez R, Nakamura KD, Weber MJ: Identification of phosphotyrosine containing proteins in untransformed and Rous sarcoma transformed chicken embryo fibroblasts. Mol Cell Biochem 2: 653–665, 1982

    Google Scholar 

  163. Cooper JA, Hunter T: Identification and characterization of cellular targets for tyrosine protein kinases. J Biol Chem 258: 1108–1115, 1983

    PubMed  Google Scholar 

  164. Greenberg ME, Edelman GM: Comparison of the 34,000-Da pp60src substrate and a 38,000-Da phosphoprotein identified by monoclonal antibodies. J Biol Chem 258: 8497–8502, 1983

    PubMed  Google Scholar 

  165. Grima DT, Kandel RA, Pepinsky B, Cruz TF: Lipocortin 2 (annexin 2) is a major substrate for constitutive tyrosine kinase activity in chondrocytes. Biochemistry 33: 2921–2926, 1994

    PubMed  Google Scholar 

  166. Isacke CM, Trowbridge IS, Hunter I: Modulation of p36 phosphorylation in human cells: studies using anti-p36 monoclonal antibodies. Mol Cell Biol 6: 2745–2751, 1986

    PubMed  Google Scholar 

  167. Brambilla R, Zippel R, Sturani E, Morello L, Peres A, Alberghina L: Characterization of the tyrosine phosphorylation of calpactin I (annexin II) induced by platelet-derived growth factor. Biochem J 278: 447–452, 1991

    PubMed  Google Scholar 

  168. Zippel R, Morello L, Brambilla R, Comoglio PM, Alberghina L, Sturani E: Inhibition of phosphotyrosine phosphatases reveals candidate substrates of the PDGF receptor kinase. Eur J Cell Biol 50: 428–434, 1989

    PubMed  Google Scholar 

  169. Gutierrez LM, Ballesta JJ, Hidalgo MJ, Gandia L, Garcia AG, Reig JA: A two-dimensional electrophoresis study of phosphorylation and dephosphorylation of chromaffin cell proteins in response to a secretory stimulus. J Neurochem 51: 1023–1030, 1988

    PubMed  Google Scholar 

  170. Cote A, Doucet JP, Trifaro JM: Phosphorylation and dephosphorylation of chromaffin cell proteins in response to stimulation. Neuroscience 19: 629–645, 1986

    PubMed  Google Scholar 

  171. Wu YN, Wagner PD: Effects of phosphatase inhibitors and a protein phosphatase on norepinephrine secretion by permeabilized bovine chromaffin cells. Biochem Biophys Acta 1092: 384–390, 1991

    PubMed  Google Scholar 

  172. Creutz CE, Zaks WJ, Hamman HC, Crane S, Martin WH, Gould KL, Oddie KM, Parsons SJ: Identification of chromaffin granule-binding proteins. Relationship of the chromobindins to calelectrin, synhibin, and the tyrosine kinase substrates p35 and p36. J Biol Chem 262: 1860–1868, 1987

    PubMed  Google Scholar 

  173. Bittner MA, Holz RW: Protein kinase C and clostridial neurotoxins affect discrete and related steps in the secretory pathway. Cell Mol Neurobiol 13: 649–664, 1993

    PubMed  Google Scholar 

  174. Vitale ML, Rodriguez Del Castillo A, Trifaro JM: Protein kinase C activation by phorbol esters induces chromaffin cell cortical filamentous actin disassembly and increases the initial rate of exocytosis in response to nicotinic receptor stimulation. Neuroscience 51: 463–474, 1992

    PubMed  Google Scholar 

  175. Rojas E, Cena V, Stutzin A, Forberg E, Pollard HB: Characteristics of receptor-operated and membrane potential-dependent ATP secretion from adrenal medullary chromaffin cells. [Review]. Annals NY Acad Sci 603: 311–322, 1990

    Google Scholar 

  176. Oddie KM, Litz JS, Balserak JC, Payne DM, Creutz CE, Parsons SJ: Modulation of pp60c-src tyrosine kinase activity during secretion in stimulated bovine adrenal chromaffin cells. J Neurosci Res 24:38–48, 1989

    PubMed  Google Scholar 

  177. TerBush DR, Holz RW: Activation of protein kinase C is not required for exocytosis from bovine adrenal chromaffin cells. The effects of protein kinase C(19–31), Ca/CaM kinase II(291–317), and staurosporine. J Biol Chem 265: 21179–21184, 1990

    PubMed  Google Scholar 

  178. Pritchard CG, Weaver DT, Baril EF, DePamphilis ML: DNA polymerase alpha cofactors C1C2 function as primer recognition proteins. J Biol Chem 258: 9810–9819, 1983

    PubMed  Google Scholar 

  179. Pritchard CG, DePamphilis ML: Preparation of DNA polymerase alpha X C1C2 by reconstituting DNA polymerase alpha with its specific stimulatory cofactors, C1C2. J Biol Chem 258: 9801–9809, 1983

    PubMed  Google Scholar 

  180. Jindal HK, Vishwanatha JK: Purification and characterization of primer recognition proteins from HeLa cells. Biochemistry 29: 4767–4773, 1990

    PubMed  Google Scholar 

  181. Vishwanatha JK, Coughlin SA, Wesolowski-Owen M, Baril EF: A multiprotein form of DNA polymerase alpha from HeLa cells. Resolution of its associated catalytic activities. J Biol Chem 261: 6619–6628, 1986

    PubMed  Google Scholar 

  182. Jindal HK, Vishwanatha JK: Functional identity of a primer recognition protein as phosphoglycerate kinase. J Biol Chem 26: 6540–6543, 1990

    Google Scholar 

  183. Kumble KD, Vishwanatha JK: Immunoelectron microscopic analysis of the intracellular distribution of primer recognition proteins, annexin 2 and phosphoglycerate kinase, in normal and transformed cells. J Cell Sci 99: 751–758, 1991

    PubMed  Google Scholar 

  184. Johnstone SA, Waisman DM, Rattner JB: Enolase is present at the centrosome of HeLa cells. Experimental Cell Res 202: 458–463, 1992

    Google Scholar 

  185. Rattner JB, Martin L, Waisman DM, Johnstone SA, Frizler MJ: Autoantibodies to the centrosome (centriole) react with determinants present in the glycolytic enzyme enolase. J Immunol 146: 2341–2344, 1991

    PubMed  Google Scholar 

  186. Goldberg M, Feinberg J, Rainteau D, Lecolle S, Kaetzel MA, Dedman JR, Weinman S: Annexins I–VI in secretory ameloblasts and odontoblasts of rat incisor. J Biol Buccale 18: 289–298, 1990

    Google Scholar 

  187. Schafer T, Karli UO, Gratwohl EK, Schweizer FE, Burger MM: Digitonin-permeabilized cells are exocytosis competent. J Neurochem 49: 1697–1707, 1987

    PubMed  Google Scholar 

  188. Holz RW: Control of exocytosis from adrenal chromaffin cells. Cell Mol Neurobiol 8: 259–268, 1988

    PubMed  Google Scholar 

  189. Grant NJ, Aunis D, Bader MF: Morphology and secretory activity of digitonin-and alpha-toxin-permeabilized chromaffin cells. Neuroscience 23: 1143–1155, 1987

    PubMed  Google Scholar 

  190. Morita K, Ishii S, Uda H, Oka M: Requirement of ATP for exocytotic release of catecholamines from digitonin-permeabilized adrenal chromaffin cells. J Neurochem 50: 644–648, 1988

    PubMed  Google Scholar 

  191. Dunn LA, Holz RW: Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells. J Biol Chem 258: 4989–4993, 1983

    PubMed  Google Scholar 

  192. Wilson SP, Kirshner N: Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells. J Biol Chem 258: 4994–5000, 1983

    PubMed  Google Scholar 

  193. Vitale ML, Rodriguez-Del-Castillo A, Trifaro JM: Loss and Ca(2+)-dependent retention of scinderin in digitonin-permeabilized chromaffin cells: correlation with Ca(2+)-evoked catecholamine release. J Neurochem 59: 1717–1728, 1992

    PubMed  Google Scholar 

  194. Sarafian T, Aunis D, Bader MF: Loss of proteins from digitonin-permeabilized adrenal chromaffin cells essential for exocytosis. J Biol Chem 262: 16671–16676, 1987

    PubMed  Google Scholar 

  195. Augustine GJ, Neher E: Calcium requirements for secretion in bovine chromaffin cells. J Physiol Lond 450: 247–271, 1992

    PubMed  Google Scholar 

  196. Nishizaki T, Walent JH, Kowalchyk JA, Martin TF: A key role for a 145-kDa cytosolic protein in the stimulation of Ca(2+)-dependent secretion by protein kinase C. J Biol Chem 267: 23972–23981, 1992

    PubMed  Google Scholar 

  197. Jones PG, Damji A, Waisman DM: Inability of annexin II tetramer to stimulate exocytosis in detergent permeabilized adrenal medulla cells. FASEB J A 1317: 1994

  198. Bennett MK, Scheller RH: The molecular machinery for secretion is conserved from yeast to neurons. Proc Natl Acad Sci U S A 90: 2559–2563, 1993

    PubMed  Google Scholar 

  199. Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE: A protein assembly-disassembly pathwayin vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75: 409–418, 1993

    PubMed  Google Scholar 

  200. Sudhof TC, Petrenko AG, Whittaker VP, Jahn R: Molecular approaches to synaptic vesicle exocytosis. Prog Brain Res 98: 235–240, 1993

    PubMed  Google Scholar 

  201. Elferink LA, Scheller RH: Synaptic vesicle proteins and regulated exocytosis. J Cell Sci Suppl 17: 75–79, 1993

    Google Scholar 

  202. Calakos N, Bennett MK, Peterson KE, Scheller RH: Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263: 1146–1149, 1994

    PubMed  Google Scholar 

  203. Whiteheart SW, Griff IC, Brunner M, Clary DO, Mayer T, Buhrow SA, Rothman JE: SNAP family of NSF attachment proteins includes a brain-specific isoform [see comments]. Nature 362: 353–355, 1993

    PubMed  Google Scholar 

  204. Alder J, Poo MM: Reconstitution of transmiter secretion. Curr Opin Neurobiol 3: 322–328, 1993

    PubMed  Google Scholar 

  205. Walch Solimena C, Jahn R, Sudhof TC: Synaptic vesicle proteins in exocytosis: what do we know? Curr Opin Neurobiol 3: 329–336, 1993

    PubMed  Google Scholar 

  206. Roth D, Burgoyne RD: SNAP-25 is present in a SNARE complex in adrenal chromaffin cells. FEBS Letters 351: 207–210, 1994

    PubMed  Google Scholar 

  207. Christmas P, Callaway J, Fallon J, Jones J, Haigler HT: Selective secretion of annexin 1, a protein without a signal sequence, by the human prostate gland. J Biol Chem 266: 2499–2507, 1991

    PubMed  Google Scholar 

  208. Cesarman GM, Guevara CA, Hajjar KA: An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA). II. Annexin II-mediated enhancement of t-PA-dependent plasminogen activation. J Biol Chem 269: 21198–21203, 1994

    PubMed  Google Scholar 

  209. Ma AS, Bell DJ, Mittal AA, Harrison HH: Immunocytochemical detection of extracellular annexin II in cultures human skin keratinocytes and isolation of annexin II isoforms enriched in the extracellular pool. J Cell Sci 107: 1973–1984, 1994

    PubMed  Google Scholar 

  210. Wirl G, Schwartz-Albiez R: Collagen-binding proteins of mammary epithelial cells are related to Ca2(+)-and phospholipid-binding annexins. J Cell Physiol 144: 511–522, 1990

    PubMed  Google Scholar 

  211. Robitzki A, Schroder HC, Ugarkovic D, Pfeifer K, Uhlenbruck G, Muller WE. Demonstration of an endocrine signaling circuit for insulin in the sponge Geodia cydonim. EMBO J 8: 2905–2909, 1989

    PubMed  Google Scholar 

  212. Nicolson GL: Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta 948: 175–224, 1988

    PubMed  Google Scholar 

  213. Nicolson GL: Tumor and host molecules important in the organ preference of metastasis. Semin Cancer Biol 2: 143–154, 1991

    PubMed  Google Scholar 

  214. Zetter BR: The cellular basis of site-specific tumor metastasis. N Engl J Med 322: 605–612, 1990

    PubMed  Google Scholar 

  215. Chung CY, Erickson HP: Cell surface annexin II is a high affinity receptor for the alternatively spliced segment of tenascin-C. J Cell Biol 126: 539–548, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from the Medical Research Council of Canada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waisman, D.M. Annexin II tetramer: structure and function. Mol Cell Biochem 149, 301–322 (1995). https://doi.org/10.1007/BF01076592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076592

Key words

Navigation