Skip to main content
Log in

Nitroimidazoles and imaging hypoxia

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Decreased tissue oxygen tension is a component of many diseases. Although hypoxia can be secondary to a low inspired P02 or a variety of lung disorders, the commonest cause is ischemia due to an oxygen demand greater than the local oxygen supply. In tumors, low tissue p02 is often observed, most often due to a blood supply inadequate to meet the tumor's demands. Hypoxic tumor tissue is associated with increased resistance to therapy. In the heart tissue hypoxia is often observed in persistent low-flow states, such as hibernating myocardium. In patients with stroke, hypoxia has been associated with the penumbral region, where an intervention could preserve function. Despite the potential importance of oxygen levels in tissue, difficulty in making this measurement in vivo has limited its role in clinical decision making. A class of compounds known to undergo different intracellular metabolism depending on the availability of oxygen in tissue, the nitroimidazoles, have been advocated for imaging hypoxic tissue. When a nitroimidazole enters a viable cell the molecule undergoes a single electron reduction, to form a potentially reactive species. In the presence of normal oxygen levels the molecule is immediately reoxidized. This futile shuttling takes place for some time, before the molecule diffuses out of the cell. In hypoxic tissue the low oxygen concentration is not able to effectively compete to reoxidize the molecule and further reduction appears to take place, culminating in the association of the reduced nitroimidazole with various intracellular components. The association is not irreversible, since these agents clear from hypoxic tissue over time. Initial development of nitroimidazoles for in vivo imaging used radiohalogenated derivatives of misonidazole, such as fluoromisonidazole, some of which have recently been employed in patients. Two major problems with fluoromisonidazole are its relatively low concentration within the lesion and the need to wait several hours to permit clearance of the agent from the normoxic background tissue (contrast between lesion and background typically <2:1 at about 90 min after injection). Even with high-resolution positron emission tomographic imaging, this combination of circumstances makes successful evaluation of hypoxic lesions a challenge. Single-photon agents, with their longer halflives and comparable biological properties, offer a greater opportunity for successful imaging. In 1992 technetium-99m labeled nitroimidazoles were described that seem to have at least comparable in vivo characteristics. Laboratory studies have demonstrated preferential binding of these agents to hypoxic tissue in the myocardium, in the brain, and in tumors. These investigations indicate that imaging can provide direct evidence of tissue with low oxygen levels that is viable. In the experimental setting this information is useful to plan a more aggressive approach to treating tumors, or revascularize a heart suffering ischemic dysfunction. Even from this early vantage point the utility of measuring tissue oxygen levels with external imaging suggests that hypoxia imaging could play a major role in clinical decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Guyton AC. Transport of oxygen and carbon dioxide in the blood and body fluids. In: Guyton DL, ed.Textbook of physiology. Philadelphia: W.B. Saunders; 1981: 504–515.

    Google Scholar 

  2. Berne RM, Levy MN. Skeletal physiology. In: Berne RM, Levy MN, eds.Physiology, 3rd edn. St. Louis: Mosby Yearbook; 1993: 292–308.

    Google Scholar 

  3. Berne RM, Levy MN. The peripheral circulation and its control. In: Berne RM, Levy MN, eds.Physiology, 3rd edn. St. Louis: Mosby Yearbook; 1993: 478–493.

    Google Scholar 

  4. Liu P, Kiess MC, Okada RD, Block PC, Strauss HW, Pohost GM, Boucher CA. The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: Does it represent scar or ischemia?Am Heart J 1985; 110: 996–1001.

    Google Scholar 

  5. Straub NC. Transport of oxygen and carbon dioxide: tissue oxygenation. In: Berne RM, Levy MN, eds.Physiology, 3rd edn. St. Louis: Mosby Yearbook; 1993: 590–598.

    Google Scholar 

  6. Buxton RB, Alpert NM, Babikian V, Weise S, Correia JA, Ackerman RH. Evaluation of the HC02 positron emission tomographic method for measuring brain pH. I. pH changes measured in states of altered PCO2.J Cereb Blood Flow Metab 1987;6:709–719.

    Google Scholar 

  7. Olive PL, Durand RE. Misomdazole binding in SCCVII tumors in relation to the tumor blood supply.Int J Radiat Oncol Biol Phys 1989; 16: 755–761.

    Google Scholar 

  8. Connet RJ, Honig CG, Gayeski E, Brooks GA. Defining hypoxic: a systems view of V02, glycolysis, energetics and intercellular P02.J Appl Physiol 1990; 68: 833–842.

    Google Scholar 

  9. Cotran RS, Kumar V, Robbins SL. Cellular injury and adaption. In: Cotran RS, Kumar V, Robbins SL, eds.Robbins pathologic basis of disease, 4th edn. Philadelphia: W.B. Sounders; 1989: 1–38.

    Google Scholar 

  10. Webster LT. Drugs used in chemotherapy of protozoal infections. In: Gilman AG, Rall TW, Nies AS, Taylor P, eds.The pharmacological basis of therapeutics, 8th edn. New York: Pergamon; 1990: 1002–1004.

    Google Scholar 

  11. Edwards DI. Nitroimidazole drugs — action and resistance mechanisms. I. Mechanisms of action.J Antimicrob Chemother 1993; 31: 9–20.

    Google Scholar 

  12. Brown JM. Hypoxic cell radiosensitisers: Where next?Int J Radiat Oncol Biol Phys 1989; 16: 987–993.

    Google Scholar 

  13. Chapman JD, Franko AJ, Sharplin J. A marker for hypoxic cells in tumours with potential clinical applicability.Br J Cancer 1981; 43: 546–550.

    Google Scholar 

  14. Kedderris GL, Miwa GT. The metabolic activation of nitroheterocyclic therapeutic agents.Drug Metab Rev 1988; 19: 33–62.

    Google Scholar 

  15. de Jong JW, van der Meer P, Nieukoop AS, Huizer T, Stroeve RJ, Bos E. Xanthine oxidoreductase activity in perfused hearts of various species, including humans.Circ Res 1990; 67: 770–773.

    Google Scholar 

  16. Bolton JL, McClellan RA. Kinetics and mechanism of the decomposition in aqueous solutions of 2-(hydroxyamino)imidazoles.J Am Chem Soc 1989; 111: 8172–8181.

    Google Scholar 

  17. Varghese AJ, Whitmore GF. Properties of 2-hydroxylaminoimidazoles and their implications for the biological effects of 2-nitroimidazoles.Chem Biol Interact 1985; 56: 269–287.

    Google Scholar 

  18. Adams GE, Clarke ED, Flockhart IR, Jacobs RS, Sehmi DS, Stratford IJ, Wardman P, Watts ME, Patrick J, Wallace RG, Smithen CE. Structure-activity relationships in the development of hypoxic cell radiosensitisers. I. Sensitisation efficiency.Int J Radiat Biol 1979; 35: 133–150.

    Google Scholar 

  19. White RAS, Workman P, Brown JM. The pharmacokinetics and tumour and neural tissue penetrating properties of SR2508 and SR-2555 in the dog — hydrophilic radiosensitisers potentially less toxic than misonidazole.Radiat Res 1980; 84: 542–561.

    Google Scholar 

  20. Sasai K, Iwai H, Yoshizawa T, Nishimoto S, Shibamoto Y, Kitakabu Y, Oya N, Takahashi M, Abe M. Pharmacokinetics of fluorinated 2- nitroimidazole hypoxic cell radiosensitisers in murine peripheral nervous tissue.Int J Radiat Biol 1992; 62:221–227.

    Google Scholar 

  21. Workman P, Brown JM. Structure-pharmacokinetic relationships for misonidazole analogues in mice.Cancer Chemother Pharmacol 1981; 6:39–49.

    Google Scholar 

  22. Chin JB, Rauth AM. The metabolism and pharmacokinetics of the hypoxic cell radiosensitiser and cytotoxic agent, misonidazole in C3H mice.Radiat Res 1981; 86: 341–357.

    Google Scholar 

  23. Grunbaum Z, Freauff SJ, Krohn KA, Wilbur DS, Magee S, Rasey JS. Synthesis and characterisation of congeners of misonidazole for imaging hypoxia.J Nucl Med 1987; 28: 68–75.

    Google Scholar 

  24. Vanderkooi JM, Erecinska M, Silver IA. Oxygen in mammalian tissue: methods of measurement and affinities of various reactions.Am J Physiol 260: C1131–C1150.

  25. Roizin-Towle L, Hall EJ, Pirro JP. Oxygen dependence for chemosensitisation by misonidazole.Br J Cancer 1986; 54: 919–924.

    Google Scholar 

  26. Olive PL, Durand RE. Misonidazole binding in SCCVII tumours in relation to the tumour blood supply.Int J Radiat Oncol Biol Phys 1989; 16: 755–761.

    Google Scholar 

  27. Urtasun RC, Chapman JD, Raleigh JA, Franko AJ, Koch CJ. Binding of3H-misonidazole to solid human tumours as a measure of tumour hypoxia.Int J Radiat Oncol Biol Phys 1986; 12:1263–1267.

    Google Scholar 

  28. Hoffman JM, Rasey JS, Spence AM, Shaw DW, Krohn KA. Binding of the hypoxia tracer [3H]misonidazole in cerebral ischaemia.Stroke 1987; 18: 168–176.

    Google Scholar 

  29. Garrecht BM, Chapman JD. The labeling of EMT-6 tumors in BALB/C mice with14C-misonidazole.Br J Radial 1983; 56: 745–753.

    Google Scholar 

  30. Blasberg R, Horowitz M, Strong J, Molnar P, Patlak C, Owens E, Fenstermacher J. Regional measurements of [14C]misonida-zole distribution and blood flow in subcutaneous RT-9 experimental tumours.Cancer Res 1985; 45: 1692–1701.

    Google Scholar 

  31. Rasey JS, Krohn KS, Freauff S. Bromomisonidazole: synthesis and characterisation of a new radiosensitiser.Radiat Res 1982;91:542–554.

    Google Scholar 

  32. Jette DC, Wiebe LL, Chapman JD. Synthesis and in vivo studies of the radiosensitiser 4-[82Br]bromomisonidazole.Int J Nucl Med Biol 1983; 10: 205–210.

    Google Scholar 

  33. Biskupiak JE, Grierson JR, Rasey JS, Martin GV, Krohn KA. Synethesis of an (iodovinyl)misonidazole derivative for hypoxic imaging.J Med Chem 1991; 34: 2165–2168.

    Google Scholar 

  34. Wiebe LI, Jette DC, Chapman JD. Electron-affinic compounds for labelling hypoxic cells: the synthesis and characterisation of 1-[2-([2-iodophenoxy)ethyl]-2-nitroimidazole.Nuklearmedizin 1984; 23: 63–67.

    Google Scholar 

  35. Jette DC, Wiebe LI, Lee J, Chapman JD. Iododoazomycin riboside (1-(5′-iodo-5′-deoxyribofuranosyl)-2-nitroimidaz-ole), a hypoxic cell marker. I. Synthesis and in-vitro characterization.Radiat Res 1986; 105: 169–179.

    Google Scholar 

  36. Mannan RH, Somayaji VV, Lee J, Mercer JR, Chapman JD, Wiebe LI. Radioiodinated 1-(5-iodo-5′-deoxy-D-arabinofura-nosyl)-2-nitroimidazole (iodoazomycin arabinoside: IAZA); a novel marker of tissue hypoxia.J Nucl Med 1991; 32: 1764–1770.

    Google Scholar 

  37. Mannan RH, Mercer JR, Wiebe LI, Kumar P, Saomayaji VV, Chapman JD. Radioiodinated azomysin pyranoside (IAZP): a novel noninvasive marker for the assessment of tumor hypoxia.J Nucl Med Biol 1992; 36: 60–67.

    Google Scholar 

  38. Mannan RH, Mercer JR, Weibe LI, Samayaji VV, Chapman JD. Radioiodinated 1-(2-fluoro-4-iodo-2,3-dideoxy—L-xylopyranosyl)-2-nitroimidazole: a novel probe for the noninvasive assessment of tumor hypoxia.Radiat Res 1992; 132: 368–374.

    Google Scholar 

  39. Jerabek PA, Dischino DD, Kilborn MR, Welch MI. Synthesis of a fluorine-18 labeled hypoxic cell sensitizer [abstract].J Nucl Med 1984; 25: P23.

    Google Scholar 

  40. Jerabeck PA, Patrick TB, Kilbourn MR, et al. Synthesis and biodistribution of18F-labeled fluoronitroimidazoles: potential in vivo markers of hypoxic tissue.Int J Radiat Appl Instrum [A] 1986; 37: 599–605.

    Google Scholar 

  41. Grierson JR, Link JM, Mathis CA, Rasey JS, Krohn KA. A radiosynthesis of fluorine-18 fluoromisonidazole.J Nucl Med 1989;30:343–350.

    Google Scholar 

  42. Rasey JS, Grunbaum Z, Magee S, Nelson NJ, Olive PL, Durand RE, Krohn KA. Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells.Radiat Res 1987; 111:292–304.

    Google Scholar 

  43. Rasey JS, Koh W-J, Grierson JR, Grunbaum Z, Krohn KA. Radiolabeled luoromisonidazole as an imaging agent for tumor hypoxia.Int J Radiat Oncol Biol Phys 1989; 17: 985–991.

    Google Scholar 

  44. Martin GV, Caldwell JC, Rasey JS, Grunbaum Z, Cerqueira M, Krohn KA. Enhanced binding of the hypoxic cell marker [H-3]-fluoromisonidazole in ischemic myocardium.J Nucl Med 1989; 30: 194–201.

    Google Scholar 

  45. Linder KE, Chan YW, Cyr JE, Nowotnik DP, Eckelman WC, Nunn AD. Synthesis, characterization and in vitro evaluation of nitroimidazole-BATO complexes: new technetium compounds designed for imaging hypoxic tissue.Bioconj Chem 1993;4:326–333.

    Google Scholar 

  46. Raju N, Ramalingam K, Nowotnik DP. Synthesis of some nitroimidazole boronic acids: precursors to technetium-99m complexes with potential for imaging hypoxie tissue.Tetrahedron 1993; 48: 10233–10238.

    Google Scholar 

  47. Clarke ED, Wardman P, Goulding KH. Anaerobic reduction of nitroimidazoles by reduced flavin mononucleotide and xanthine oxidase.Biochem Pharmacol 1980; 329: 2684–2687.

    Google Scholar 

  48. Josephy PD, Palcic B, Skarsgard LD. Reduction of misonidazole and its derivatives by xanthine oxidase.Biochem Pharmacol 1981; 31:3237–3242.

    Google Scholar 

  49. Predegas JL, Rasey JS, Grunbaum Z, Krohn K. Reduction of fluoromisonidazole and its derivatives by xanthine oxidase.Biochem Pharmacol 1991; 42: 2387–2395.

    Google Scholar 

  50. Linder KE, Chan YW, Cyr JE, Malley MF, Nowotnik DP, Nunn AD.99TcO(PnAO-1–2-nitroimidazole) [BMS-181321], a new technetium-containing nitroimidazole complex for im aging hypoxia: synthesis, characterization and xanthine oxidase-catalyzed reduction.J Med Chem 1994; 37: 9–17.

    Google Scholar 

  51. Pirro JP, Di Rocco RJ, Narra RK, Nunn AD. The relationship between in-vitro trans-endothelial permeabilty and in-vivo single-pass brain extraction of several SPECT imaging agents.J Nucl Med 1994; In press.

  52. Linder KE, Cyr JE, Chan Y-W, Raju N, Ramalingam K, Nanjappan P, Nowotnik D, Wedeking P, Rumsey W, Narra RK, Nunn AD. Effect of substituents on physiochemical and biological behavior of Tc-Pnao nitroimidazoles [abstract].J Nucl Med 1994; 35: 18P.

    Google Scholar 

  53. Chan YW, Romero V, Linder KE, Patel BC, Jayatilak PG, Nunn AD, Rumsey W. In-vitro studies on the hypoxia retention of a novel technetium-99m labeled nitroimidazole in rat heart [abstract].J Nucl Med 1994; 35: 152P.

    Google Scholar 

  54. New radiolabeled diamino mono- and dioximino compounds —useful for treating tumors and as imaging agents in diagnostics. World Patent Appl. WO94089-A1, Amersham Int. plc.

  55. Neumeier R, Kramp W Macke H. Chelating agents for forming complexes with radioactive isotopes, metal complexes thereof and use thereof in diagnosis and therapy. Eur Patent Appl 0417 870 A2. 1990.

  56. Ramalingam K, Raju N, Nanjappan P, Linder KE, Pirro J, Zeng W, Rumsey W, Nowotnik DP, Nunn AD. The synthesis and in vitro evaluation of a99mTc nitroimidazole complex based on a bis(amine-phenol) ligand. Comparison to BMS 18134.J Med Chem; In press.

  57. Sapirstein LA. Regional blood flow by the fractional distribution of indicators.Am J Physiol 1958; 193: 161–168.

    Google Scholar 

  58. Famighetti R, Funk, Wagnalls, Mahwah NJ, eds.The world almanac and book of facts. 1994: 691.

  59. Berne RM, Levy MN. Special circulations, In: Berne RM, Levy MN, eds.Physiology, 3rd edn. St. Louis: Mosby Yearbook; 1993: Chap. 31.

    Google Scholar 

  60. Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction.N Engl J Med 1994; 331: 222–227.

    Google Scholar 

  61. Braunwald E, Sobel BE. Coronary flow and myocardial ischemia. In: Braunwald E, ed.Heart Disease, 4th edn. Philadelphia: W.B. Saunders; 1992: 1161–1191.

    Google Scholar 

  62. Opie LH. The mechanism of myocyte death in ischaemia.Eur Heart J 1993; 14 Suppl G: P 31–33.

    Google Scholar 

  63. Wynne J, Holman BL. Acute myocardial infarct scintigraphy with infarct-avid radiotracers.Med Clin North Am 1980; 64: 119–144.

    Google Scholar 

  64. Rumsey WL, Patel B, Kuczynski B, Narra RK, Chan YW, Linder KE, Cyr J, Raju N, Ramalingam K, Nunn AD. Potential of nitroimidazoles as markers of hypoxia in heart. In: Vaupel P et al., eds.Oxygen transport to tissue. New York: Plenum; 1994: 263–270.

    Google Scholar 

  65. Shelton ME, Dence CS, Hwang DR, Welch MJ, Bergmann SR. Myocardial kinetics of fluorine 18 misonidazole: a marker of hypoxic myocardium:J Nucl Med 1989; 30: 351–358.

    Google Scholar 

  66. Rumsey WL, Cyr JE, Raju N, Narra RK. A novel [99m]technetium-labeled nitroheterocycle capable of identification of hypoxia in heart.Biochem Biophys Res Commun 1993; 193: 1239–1246.

    Google Scholar 

  67. Rumsey WL, Patel B, Linder KE. The effect of graded hypoxia on the retention of a novel99mTc-nitroheterocycle in the perfused rat heart. J Nucl Med 1994; In press.

  68. Kusuoka H, Hashimoto K, Fukuchi K, Nishimura T. Kinetics of a putative hypoxic tissue marker, technetium-99m-nitroimidazole (BMS-181321), in normoxic, hypoxic, ischemic and stunned myocardium,J Nucl Med 1994; 35: In press.

  69. Martin GV, Biskupiak JE, Caldwell JH, Rasey JS, Krohn KA. Characterization of iodovinylmisonidazole as a marker for myocardial hypoxia.J Nucl Med 1993; 34: 918–923.

    Google Scholar 

  70. Goldstein RA. Wanted dead or alive — the search for markers of myocardial viability.J Am Coll Cardiol 1990; 16: 486–488.

    Google Scholar 

  71. Di Rocco RJ, Bauer A, Kuczynski BL, Pirro JP, Linder KE, Narra RK, Nunn AD. Imaging regional hypoxia with a new technetium-labeled imaging agent in rabbit myocardium after occlusion of the left anterior descending coronary artery [abstract].J Nucl Med 1992; 33: 865.

    Google Scholar 

  72. Stone CK, Mulnix T, Nickles RJ, Renstrom B, Nellis SH, Liedtke AJ, Nunn AD. Myocardial kinetics of a putative hypoxic tissue marker. Technetium-99m-labeled nitroimidazole (BMS-181321) after regional ischemia and reperfusion [abstract].J Nucl Med 34: 16P.

  73. Matchar D. Pink sheet. 23 May 1993.

  74. Heiss WD. Flow thresholds of functional and morphological damage of brain tissue.Stroke 1983; 14: 329–331.

    Google Scholar 

  75. Di Rocco RJ, Kuczynski BL, Pirro JP, Bauer A, Linder KE, Ramalingam K, Cyr JE, Chan Y-W, Raju N, Narra RK, Nowotnik DP, Nunn AD. Imaging ischemic tissue at risk of infarction during stroke.J Cereb Blood Flow Metab 1993; 13: 755–762.

    Google Scholar 

  76. Hockel M, Knoop C, Schlenger K, Vorndran B, Knapstein PG, Vaupel P. Intratumoral p02 histography as predictive assay in advanced cancer of the uterine cervix. In: Vaupel P et al., eds.Oxygen transport to tissue XV. New York: Plenum; 1994: 445–450.

    Google Scholar 

  77. Gatenby RA, Kessler HB, Rosenblum JS, Coia LR, Moldofsky PJ, Hartz WH, Broder GJ. Oxygen distribution in squamous cell carcinoma metastases and its relationship in outcome of radiation therapy.Int J Radiat Oncol Biol Phys 1988; 14:831–838.

    Google Scholar 

  78. Parliament MB, Chapman JD, Urtasun RC, McEwan AL, Golberg L, Mercer JR, Mannan RH, Weibe LL. Noninvasive assessment of human tumor hypoxia with123I-iodoazomycin arabinoside: preliminary report of a clinical study.Br J Cancer 1992; 65: 90–95.

    Google Scholar 

  79. Wen M, Jayatilak PG, Bauer A, Patel B, Rumsey WL. Potential of a novel hypoxia agent BMS-181321 as a tumor marker. Proc. of 42nd annual meeting of the Radiation Research Society, Nashville, Tenn., 29 April–4 May 1994. p 249 [abstract].

  80. Moore RB, Chapman JD, Mercer JR, Mannan R, Wiebe LL, McEwan A, McPhee S. Measurement of PDT-induced hypoxia in Dunning prostate tumors by iodine-123-p-iodoazomycin arabinoside.J Nucl Med 1993; 34: 405–413.

    Google Scholar 

  81. Wilson DF, Rumsey WL, Green TJ, Vanderkooi JM. The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration.J Biol Chem 1988; 263: 2712.

    Google Scholar 

  82. Rumsey WL, Patel B, Kuczynski B, Bauer A. Phosphorescence quenching and technetium-linked nitroimidazoles: two new methods for detection of hypoxia in heart.Adv Exp Med Biol 1994; In press.

  83. Ballinger JR, Wan Min Kee J, Rauth AM. In vitro and in vivo studies of a technetium-99m labelled 2-nitroimidazole derivative. Proc. of 42nd annual meeting of the Radiation Research Society, Nashville, Tenn. 29 April–4 May 1994. p 145 [abstract].

  84. Groshar D, McEwan AJB, Parliament MB, Urtashun RC, Golberg LE, Hoskinson M, Mercer JR, Mannan RH, Weibe LL, Chapman JD. Imaging tumor hypoxia and tumor pefusion.J Nucl Med 1993; 34: 885–888.

    Google Scholar 

  85. Yeh SH, Liu RS, Hu HH, Chang CP, Chu LS, Chou KL, Wu LC. Ischemic penumbra in acute stroke: demonstration by PET with fluorine-18 fluoromisonidazole [abstract].J Nucl Med 1994; 35: 205P.

    Google Scholar 

  86. Tubis M, Krishnamurthy G, Endow JS, Stein RA, Suwanik R, Blahd WH. Labeled metronidazoles as potential agents for amebic hepatic abscess imaging.J Nucl Med 1975; 14: 163–171.

    Google Scholar 

  87. Liu RS, Yeh SH, Chang CP, Chu LS, Lui MT, Chou KL, Yu LC. Detection of odontogenic infections by F-18 fluoromisonidazole (FMISO) [abstract].J Nucl Med 1994; 35: 113P.

    Google Scholar 

  88. Yeh SH, Wu LC, Liu RS, Yang DJ, Yen SH, Yu TW, Chang CW, Chen KY Fluorine-18 fluoromisonidazole (F-18-MISO) tumor: muscle retention ratio in detecting hypoxia in nasopharyngeal carcinoma [abstract].J Nucl Med 1994; 35: 142P.

    Google Scholar 

  89. Raleigh JA, Franko AJ, Treiber EO, Lunt JA, Allen PS. Covalent binding of fluorinated 2-nitroimidazole to EMT-6 tumours in Balb/C mice. Detection by F-19 nuclear magnetic resonance at 2.35 T.Int J Radiat Oncol Biol Phys 1986; 12: 1249–1251.

    Google Scholar 

  90. Maxwell RJ, Workman P, Griffiths JR. Demonstration of tumour-selective retention of fluorinated nitroimidazole probes by 19F magnetic resonance spectroscopy in vivo.Int J Radiat Oncol Biol Phys 1989; 16: 925–929.

    Google Scholar 

  91. Kwock L, Gill M, McMurray HL, Beckman W, Raleigh JA, Joseph AP. Evaluation of a fluorinated 2-nitroimidazole binding to hypoxic cells in tumour-bearing rats by 19F magnetic resonance spectroscopy and immunohistochemistry.Radiat Res 1992; 129: 71–78.

    Google Scholar 

  92. Koch CJ, Lord EM. Detection of hypoxia. International patent application WO 94/11348. 1994

  93. Chapman JD, McPhee MS, Walz N, Chetner MP, Stobbe CC, Soderlind K, Arnfield M, Meeker BE, Trimble L, Allen PS. Nuclear magnetic resonance spectroscopy and sensitiser-adduct measurements of photodynamic therapy-induced ischaemia in solid tumours.J Natl Cancer Inst 1991; 83: 1650–1659.

    Google Scholar 

  94. Mason RP, Jeffrey FMH, Malloy CR, Babcock EE, Antich PP. A noninvasive assessment of myocardial oxygen tension; 19F NMR spectroscopy of sequestered perfluorocarbon emulsion.Magn Reson Med 1992; 27; 27: 310–317.

    Google Scholar 

  95. Holland SK, Kennan RP, Schaub MM, D'Angelo MJ, Gore JC. Imaging oxygen tension in liver and spleen by 19F NMR.Magn Reson Med 1993; 29: 446–458.

    Google Scholar 

  96. Dardzinski BJ, Sotak CH. Rapid tissue oxygen tension mapping using 19F inversion-recovery echo-planar imaging of perfluoro-15-crown-5-ether.Magn Reson Med 1994; 32: 88–97.

    Google Scholar 

  97. Hodgkiss RJ, Jones GW, Long A, Middleton RW, Parrick J, Stratford MRL, Wardman P, Wilson GD. Fluorescent markers for hypoxic cells: a study of nitroaromatic compounds with fluorescent heterocyclic side chains, that undergo bioreductive binding.J Med Chem 1991; 34: 2268–2274.

    Google Scholar 

  98. Hodgkiss RJ, Begg AC, Middleton RW, Patrick J, Stratford MRL, Wardman P, Wilson GD. Fluorescent markers for hypoxic cells. A study of novel heterocyclic compounds that undergo bioreductive binding.Biochem Pharmacol 1991; 41: 533–541.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunn, A., Linder, K. & Strauss, H.W. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 22, 265–280 (1995). https://doi.org/10.1007/BF01081524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081524

Key words

Navigation