Skip to main content
Log in

Distribution of calbindin and parvalbumin in the developing somatosensory cortex and its primordium in the rat: an immunocytochemical study

  • Published:
Journal of Neurocytology

Summary

Immunocytochemical techniques were used to analyze the distribution of the calcium-binding proteins calbindin and parvalbumin during the pre- and postnatal development of the rat somatosensory cortex. Calbindin occurs in most early differentiated neurons that form the primordial plexiform layer at embryonic day 14. This expression in transient; during the perinatal period, calbindin becomes immunologically undetectable within the structures derived from the primordial plexiform layer, i.e., the prospective layers I and VIb. Immunoreactive neurons are also absent from adult layers I and VIb. Calbindin is also detected in a second population of neurons which, from embryonic day 18 onwards, distributes diffusely within the cortical plate. Some neurons of this population show morphological traits of immaturity, while others show complete dendritic arborization. The definitive pattern of distribution of calbindin-immunoreactive neurons is achieved by postnatal day 22. Infragranular layers contain intensely-immunoreactive cells whose numerical density decreases during postnatal development, whereas in supragranular layers similar neurons are interspersed among numerous faintly-stained neurons.

Parvalbumin is detected for the first time at postnatal day 6, within a small group of neurons located in cortical layer V, and extends afterwards through the whole thickness of the cerebral cortex. At this same postnatal stage, groups of immunoreactivepuncta are also found in layer IV of the somatosensory cortex; these puncta increase in density progressively and, at embryonic day 13, immunoreactive cells appear also grouped at this level. At this postnatal age, parvalbumin immunostaining delineates the somatosensory map in cortical layer IV. From this stage to adulthood, the number of immunoreactive neurons increases in the whole thickness of the somatosensory cortex. Barrels in layer IV become less distinct as immunoreactive cells and processes invade the septa. Layer IV in the adult somatosensory cortex appears more densely populated by parvalbumin immunoreactive neurons and puncta than in the surrounding areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendoerfer, K. L., Shelton, D. L., Shooter, E. M. &Shatz, C. J. (1990) Nerve growth factor receptor immunoreactivity is transiently associated with the subplate neurons of the mammalian cerebral cortex.Proceedings of the National Academy of Sciences (USA) 87, 187–90.

    Google Scholar 

  • Antonini, A. &Shatz, C. J. (1990) Relation between putative transmitter phenotypes and connectivity of subplate neurons during cerebral cortical development.European Journal of Neuroscience 2, 744–61.

    Google Scholar 

  • Bayer, S. A. &Altman, J. (1990) Development of layer I and the subplate in the rat neocortex.Experimental Neurology 107, 48–62.

    Google Scholar 

  • Bayer, S. A. &Altman, J. (1991)Neocortical Development. Raven Press, New York.

    Google Scholar 

  • Bernhardt, R. &Matus, A. (1984) Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons.Journal of Comparative Neurology 226, 203–21.

    Google Scholar 

  • Celio, M. R. (1986) Parvalbumin in most γ-aminobutyric acid-containing neurons of the rat cerebral cortex.Science 231, 995–7.

    Google Scholar 

  • Celio, M. R. (1990) Calbindin D-28k and parvalbumin in the rat nervous system.Neuroscience 35, 375–475.

    Google Scholar 

  • Celio, M. R. &Heizmann, C. W. (1981) Calcium-binding protein parvalbumin as a neuronal marker.Nature 293, 300–2.

    Google Scholar 

  • Celio, M. R., Baier, W., Schärer, L., De Viragh, P. A. &Gherday, Ch. (1988) Monoclonal antibodies directed against the calcium binding protein parvalbumin.Cell Calcium 9, 81–6.

    Google Scholar 

  • Celio, M. R., Baier, W., Schärer, L., Gregersen, H. J., De Viragh, P. A. &Norman, A. W. (1990) Monoclonal antibodies directed against the calcium-binding protein calbindin D-28k.Cell Calcium 11, 599–602.

    Google Scholar 

  • Chun, J. J. M. &Shatz, C. J. (1989a) The earliest-generated neurons of the cat cerebral cortex: characterization by MAP2 and neurotransmitter immunohistochemistry during fetal life.Journal of Neuroscience 9, 1648–67.

    Google Scholar 

  • Chun, J. J. M. &Shatz, C. J. (1989b) Interstitial cells of the adult neocortical white matter are the remnants of the early generated subplate population.Journal of Comparative Neurology 282, 555–69.

    Google Scholar 

  • Cobas, A., Welker, E., Fairén, A., Kraftsik, R. &Van Der Loos, H. (1987) GABAergic neurons in the barrel cortex of the mouse: an analysis using neuronal arche-types.Journal of Neurocytology 16, 843–71.

    Google Scholar 

  • Cobas, A., Fairén, A., Alvarez-bolado, G. &Sanchez, M. P. (1991) Prenatal development of the intrinsic neurons of the rat neocortex. A comparative study of the distribution of GABA-immunoreactive cells and the GabaA receptor.Neuroscience 40, 375–97.

    Google Scholar 

  • Crandall, J. E., Jacobson, M. &Kosik, K. S. (1986) Ontogenesis of microtubule-associated protein 2 (MAP2) in embryonic mouse cortex.Developmental Brain Research 28, 127–33.

    Google Scholar 

  • Decamilli, P., Miller, P. E., Navone, F., Theurkauf, W. E. &Vallee, R. B. (1984) Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence.Neuroscience 11, 819–46.

    Google Scholar 

  • Defelipe, J. &Jones, E. G. (1991) Parvalbumin immunoreactivity reveals layer IV of monkey cerebral cortex as a mosaic of microzones of thalamic afferent terminations.Brain Research 562, 39–47.

    Google Scholar 

  • Defelipe, J. &Jones, E. G. (1992) High resolution light and electron microscopic immunocytochemistry of colocalized GABA and calbindin D-28k in somata and double bouquet cell axons of monkey somatosensory cortex.European Journal of Neuroscience 4, 46–60.

    Google Scholar 

  • Defelipe, J., Hendry, S. H. C. &Jones, E. G. (1989a) Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity.Brain Research 503, 49–54.

    Google Scholar 

  • Defelipe, J., Hendry, S. H. C. &Jones, E. G. (1989b) Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex.Proceedings of the National Academy of Sciences (USA) 86, 2093–7.

    Google Scholar 

  • Defelipe, J., Hendry, S. H. C., Hashikawa, T., Molinari, M. &Jones, E. G. (1990) A microcolumnar structure of monkey cerebral cortex revealed by immuno-cytochemical studies of double bouquet cells axons.Neuroscience 37, 655–73.

    Google Scholar 

  • Demeulemeester, H., Vandesande, F., Orban, G. A., Brandon, C. &Vanderhaeghen, J. J. (1988) Hetero-geneity of GABAergic cells in cat visual cortex.Journal of Neuroscience 8, 988–1000.

    Google Scholar 

  • Demeulemeester, H., Vandesande, F., Orban, G. A., Heizmann, C. W. &Pochet, R. (1989) Calbindin D-28k and parvalbumin immunoreactivity is confined to two separate neuronal populations in the cat visual cortex, whereas partial coexistence is shown in the dorsal lateral geniculate nucleus.Neuroscience Letters 99, 6–11.

    Google Scholar 

  • Derer, P. (1974) Histogenèse de nécortex du rat albinos durant la période foetale et néonatale.Journal für Hirnforschung 15, 49–74.

    Google Scholar 

  • Derer, P. &Derer, M. (1990) Cajal-Retzius cell ontogenesis and death in mouse brain visualized with horseradish peroxidase and electron microscopy.Neuroscience 36, 839–56.

    Google Scholar 

  • Enderlin, S., Norman, A. W. &Celio, M. R. (1987) Ontogeny of the calcium binding protein calbindin D-28k in the rat nervous system.Anatomy and Embryology 177, 15–28.

    Google Scholar 

  • Endo, T., Kobayashi, S. & Onaya, T. (1985) Parvalbumin in rat cerebrum, cerebellum and retina during postnatal development.Neuroscience Letters 60, 279–82.

    Google Scholar 

  • Erzurumlu, R. S. &Jhaveri, S. (1990) Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex.Developmental Brain Research 56, 229–34.

    Google Scholar 

  • Fairén, A. (1992) Axonal patterns of interneurons in the cerebral cortex: in memory of Rafael Lorente de Nó. InThe Mammalian Cochkar Nuclei: Organization and Function. An Homage to Lorente de Nó (edited byMerchán, M., Juiz, J. M. &Hackney, C. M.). Nato-ASI Series, New York: Plenum Press, in press.

    Google Scholar 

  • Fairén, A., Defelipe, J., &Regidor, J. (1984) Nonpyramidal neurons. General account. InCerebral Cortex. Vol. 1 (edited byPeters, A. &Jones, E. G.) pp. 201–53. New York: Plenum Press.

    Google Scholar 

  • Finlay, B. L. &Slattery, M. (1983) Local differences in the amount of early cell death in neocortex predict adult local specializations.Science 219, 1349–51.

    Google Scholar 

  • Frassoni, C., Bentivoglio, M., Spreafico, R., Sanchez, M. P., Puelles, L. &Fairén, A. (1991) Postnatal development of calbindin and parvalbumin immunoreactivity in the thalamus of the rat.Developmental Brain Research 58, 243–9.

    Google Scholar 

  • Hendrickson, A. E., Van Brederode, J. F. M., Mulligan, K. A. &Celio, M. R. (1991) Development of the calcium-binding proteins parvalbumin and calbindin in monkey striate cortex.Journal of Comparative Neurology 307, 626–46.

    Google Scholar 

  • Hendry, S. H. C., Jones, E. G., Defelipe, J., Schmechel, D., Brandon, C. &Emson, P. C. (1984) Neuropeptide-containing neurons of the cerebral cortex are also GABAergic.Proceedings of the National Academy of Sciences (USA) 81, 6526–30.

    Google Scholar 

  • Hendry, S. H. C., Jones, E. G., Hockfield, S. &Mckay, R. D. G. (1988) Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus.Journal of Neuroscience 8, 518–42.

    Google Scholar 

  • Hendry, S. H. C., Jones, E. G., Emson, P. C., Lawson, D. E. M., Heizmann, C. W. &Streit, P. (1989) Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities.Experimental Brain Research 76, 467–72.

    Google Scholar 

  • Houser, C. R., Vaughn, J. E., Hendry, S. H. C., Jones, E. G. &Peters, A. (1984) GABA neurons in the cerebral cortex. InCerebral Cortex Vol. 2 (edited byJones, E. G. &Peters, A.) pp. 63–39. New York: Plenum Press.

    Google Scholar 

  • Huntley, G. W. &Jones, E. G. (1990) Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins.Journal of Neurocytology 19, 200–12.

    Google Scholar 

  • Huntley, G. W., Hendry, S. H. C., Killackey, H. P., Chalupa, L. M. &Jones, E. G. (1988) Temporal sequence of neurotransmitter expression by developing neurons of fetal monkey visual cortex.Developmental Brain Research 43, 69–96.

    Google Scholar 

  • Jhaveri, S., Erzurumlu, R. S. &Crossin, K. (1991) Barrel construction in rodent neocortex: role of thalamic afferents versus extracellular matrix molecules.Proceedings of the National Academy of Sciences (USA) 88, 4489–93.

    Google Scholar 

  • Kawaguchi, Y., Katsumaru, H., Kosaka, T., Heizman, C. W. &Hama, K. (1987) Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin.Brain Research 416, 369–74.

    Google Scholar 

  • Koh, S. &Higgins, G. A. (1991) Differential regulation of the low-affinity nerve growth factor receptor during postnatal development of the rat brain.Journal of Comparative Neurology 313, 494–508.

    Google Scholar 

  • Koh, S. &Loy, R. (1989) Localization and development of nerve growth-factor-sensitive rat basal forebrain and their afferent projections to hippocampus and neocortex.Journal of Neuroscience 9, 2999–3018.

    Google Scholar 

  • König, N., Roch, G. &Marty, R. (1975) The onset of synaptogenesis in rat temporal cortex.Anatomy and Embryology 148, 73–87.

    Google Scholar 

  • Kosaka, T. &Heizmann, C. W. (1989) Selective staining of a population of parvalbumin-containing GABAergic neurons in the rat cerebral cortex by lectins with specific affinity for terminal N-acetylgalactosamine.Brain Research 483, 158–63.

    Google Scholar 

  • Kosaka, T., Heizmann, C. W. &Barnstable, C. J. (1989) Monoclonal antibody VC1.1 selectively stains a population of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat cerebral cortex.Experimental Brain Research 78, 43–50.

    Google Scholar 

  • Kosaka, T., Isogai, K., Barnstable, C. J. &Heizmann, C. W. (1990) Monoclonal antibody HNK-1 selectively stains a subpopulation of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat cerebral cortex.Experimental Brain Research 82, 566–74.

    Google Scholar 

  • Kostovic, I. &Rakic, P. (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon.Journal of Neurocytology 9, 219–42.

    Google Scholar 

  • Lewis, D. A. &Lund, J. S. (1990) Heterogeneity of chandelier neurons in monkey neocortex: Corticotropin-releasing factor- and parvalbumin-immunoreactive populations.Journal of Comparative Neurology 293, 599–615.

    Google Scholar 

  • Liu, F.-C. &Graybiel, A. M. (1992) Transient calbindin-D28k-positive systems in the telencephalon: ganglionic eminence, developing striatum and cerebral cortex.Journal of Neuroscience 12, 674–90.

    Google Scholar 

  • Lorente De Nó, R. (1922) La corteza cerebral del ratón (Primera contribución — La corteza acústica).Trabajos del Laboratorio de Investigaciones Biológicas de la Universidad de Madrid 20, 41–78. English translation:Fairén, A., Regidor, J. &Kruger, L. (1992) The cerebral cortex of the mouse (A first contribution — The “acoustic” cortex).Somatosensory and Motor Research 9, 3–36.

    Google Scholar 

  • Luskin, M. B. &Shatz, C. J. (1985) Studies of the earliest generated cells of the cat's visual cortex: cogeneration of subplate and marginal zones.Journal of Neuroscience 5, 1062–75.

    Google Scholar 

  • Marín-Padilla, M. (1970) Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study. II. The basket-pyramidal system.Brain Research 23, 185–91.

    Google Scholar 

  • Matus, A., Bernhardt, R., Boomer, R. &Alaimo, D. (1986) Microtubule-associated protein 2 and tubulin are differently distributed in the dendrites of developing neurons.Neuroscience 17, 371–89.

    Google Scholar 

  • Meyer, G. &Ferres-Torres, R. (1984) Postnatal maturation of nonpyramidal neurons in the visual cortex of the cat.Journal of Comparative Neurology 228, 226–44.

    Google Scholar 

  • Miller, M. W. (1986) The migration and neurochemical differentiation of γ-aminobutyric acid (GABA)-immuno-reactive neurons in rat visual cortex as demonstrated by a combined immunocytochemical-autoradiographic technique.Developmental Brain Research 28, 41–6.

    Google Scholar 

  • Naegele, J. R. &Barnstable, C. J. (1989) Molecular determinants of GABAergic local circuit neurons in the visual cortex.Trends in Neuroscience 12, 28–34.

    Google Scholar 

  • Naegele, J. R., Barnstable, C. J. &Wahle, P. R. (1991) Expression of a unique 56-KDa polypeptide by neurons in the subplate zone of the developing cerebral cortex.Procedings of the National Academy of Sciences (USA) 88, 330–4.

    Google Scholar 

  • Nitsch, R., Bergmann, I., Küppers, K., Mueller, G. &Frotscher, M. (1990) Late appearance of parvalbumin-immunoreactivity in the development of GABAergic neurons in the rat hippocampus.Neuroscience Letters 118, 147–50.

    Google Scholar 

  • Puelles, L., Sanchez, M. P., Spreafico, R. &Fairén, A. (1992) Prenatal development of calbindin immunoreactivity in the dorsal thalamus of the rat.Neuroscience 46, 135–47.

    Google Scholar 

  • Raedler, E. &Raedler, A. (1978) Autoradiographic study of early neurogenesis in rat neocortex.Anatomy and Embryology 154, 267–84.

    Google Scholar 

  • Rakic, P. (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex.Journal of Comparative Neurology 145, 61–84.

    Google Scholar 

  • Rausell, E. &Jones, E. G. (1991) Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map.Journal of Neuroscience 11, 210–25.

    Google Scholar 

  • Reep, R. L. &Goodwin, G. S. (1988) Layer VII of rodent cerebral cortex.Neuroscience Letters 90, 15–20.

    Google Scholar 

  • Rickmann, M., Chronwall, B. M. &Wolff, J. R. (1977) On the development of non-pyramidal neurons and axons outside the cortical plate: the early marginal zone as a palliai anlage.Anatomy and Embryology 151, 285–307.

    Google Scholar 

  • Sanchez, M. P., Frassoni, C., Fairén, A., Alvarez-Bolado, G. &Spreafico, R. (1990) Expression of calbindin and parvalbumin during pre- and postnatal development of the rat cerebral cortex.European Journal of Neuroscience Supplement3, 284 (Abstract).

    Google Scholar 

  • Séquier, J. M., Hunziker, W., Andressen, C. &Celio, M. R. (1990) Calbindin D-28k: protein and mRNA localization in the rat brain.European Journal of Neuroscience 2, 1118–26.

    Google Scholar 

  • Senft, S. L. &Woolsey, T. A. (1991) Growth of thalamic afferents into mouse barrel cortex.Cerebral Cortex 1, 308–35.

    Google Scholar 

  • Seto-ohshima, A., Aoki, E., Semba, R., Emson, P. C. &Heizmann, C. W. (1990) Appearance of parvalbumin-specific immunoreactivity in the cerebral cortex and hippocampus of the developing rat and gerbil brain.Histochemistry 94, 579–89.

    Google Scholar 

  • Shatz, C. J., Chun, J. J. M. &Luskin, M. B. (1988) The role of the subplate in the development of the mammalian telencephalon. InCerebral Cortex Vol., 7 (edited byPeters, A. &Jones, E. G.) pp. 35–88. New York: Plenum Press.

    Google Scholar 

  • Solbach, S. &Celio, M. R. (1991) Ontogeny of the calcium binding protein parvalbumin in the rat nervous system.Anatomy and Embryology 184, 103–24.

    Google Scholar 

  • Somogyi, P., Hodgson, A. J., Smith, A. D., Nunzi, M. G., Gorio, A. &Wu, J.-Y. (1984) Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin or cholecystokinin-immunoreactive material.Journal of Neuroscience 4, 2590–603.

    Google Scholar 

  • Stensaas, L. J. (1967) The development of hippocampal and dorsolateral palliai regions of the cerebral hemisphere in fetal rabbits. II. Twenty millimeter stage, neuroblast morphology.Journal of Comparative Neurology 129, 71–84.

    Google Scholar 

  • Stichel, C. C., Singer, W., Heizmann, C. W. &Norman, A. W. (1987) Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindin-D 28k, in the adult and developing visual cortex of cats: a light and electron microscopic study.Journal of Comparative Neurology 262, 563–77.

    Google Scholar 

  • Valverde, F., Facal-valverde, M. V., Santacana, M. &Heredia, M. (1989) Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: a correlated Golgi and auto-radiographic study.Journal of Comparative Neurology 290, 118–40.

    Google Scholar 

  • Van Brederode, J. F. M., Mulligan, K. A. &Hendrickson, A. E. (1990) Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex.Journal of Comparative Neurology 298, 1–22.

    Google Scholar 

  • Van Brederode, J. F. M., Helliesen, M. K. &Hendrickson, A. E. (1991) Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat.Neuroscience 44, 157–71.

    Google Scholar 

  • Wahle, P., Meyer, G., Wu, J.-Y. &Albus, K. (1987) Morphology and axon terminal pattern of glutamate decarboxylase-immunoreactive cell types in the white matter of the cat occipital cortex during early postnatal development.Developmental Brain Research 36, 53–61.

    Google Scholar 

  • Welker, C. (1971) Microelectrode delineation of fine grain somatotopic organization of SmI cerebral neocortex in albino rat.Brain Research 26, 259–75.

    Google Scholar 

  • Wolff, J. R., Böttcher, H., Zetzsche, T., Oertel, W. H. &Chronwall, B. M. (1984) Development of GABAergic neurons in rat visual cortex as identified by glutamate decarboxylase-like immunoreactivity.Neuroscience Letters 47, 207–12.

    Google Scholar 

  • Woo, T. U., Beale, J. M. &Finlay, B. L. (1991) Dual fate of subplate neurons in a rodent.Cerebral Cortex 1, 433–43.

    Google Scholar 

  • Woolsey, T. A. &Van Der Loos, H. (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units.Brain Research 17, 205–42.

    Google Scholar 

  • Yan, Q. &Johnson, E. M. (1988) An immunohistochemical study of the nerve growth factor receptor in developing rats.Journal of Neuroscience 8, 3481–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, M.P., Frassoni, C., Álvarez-Bolado, G. et al. Distribution of calbindin and parvalbumin in the developing somatosensory cortex and its primordium in the rat: an immunocytochemical study. J Neurocytol 21, 717–736 (1992). https://doi.org/10.1007/BF01181587

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01181587

Keywords

Navigation