Skip to main content
Log in

Molecular mechanism of stomach carcinogenesis

  • Guest Editorial
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Gene changes in multiple oncogenes, multiple growth factors and multiple tumor-suppressor genes are observed in stomach cancer. Among them, those most commonly implicated in both well-differentiated adenocarcinoma and poorly differentiated adenocarcinoma are inactivation (mutations and allele loss) of the p53 gene, and activation (abnormal expression and amplification) of the c-met gene. Moreover, they occur at an early stage of stomach carcinogenesis. In addition, loss of heterozygosity (LOH) on chromosome 5q (APC locus) is frequently associated with well-differentiated adenocarcinoma. LOH on chromosome 18q (DCC locus) and LOH of thebcl-2 gene also are common events of well-differentiated adenocarcinoma. LOH on chromosomes 1q and 7q may be involved in the progression of well-differentiated adenocarcinoma. Conversely, the development of poorly differentiated adenocarcinoma, in addition to changes in p53 and c-met genes, requires reduction or dysfunction of cadherin. Overexpression ofbcl-2 protein is observed in poorly differentiated adenocarcinoma or signetring cell carcinoma. Moreover, the K-sam gene is amplified preferentially in poorly differentiated adenocarcinoma or scirrhous carcinoma. K-sam amplification in scirrhous carcinoma often occurs independently of c-met gene amplification. LOH on chromosome 1p also is relatively common in poorly differentiated adenocarcinoma. Exceptionally, signetring cell carcinoma shares APC mutations. There are some differences in expression of the growth-factor/receptor system between well-differentiated adenocarcinoma and poorly differentiated adenocarcinoma. Moreover, interaction between cell-adhesion molecules in tumor cells expressing c-met and hepatocyte growth factor (HGF) from stromal cells is linked with morphogenesis of two histological types of stomach cancer. Intestinal metaplasia and adenoma of the stomach also contain p53 mutation and K-ras mutations ortpr-met rearrangement. Taken together, different genetic pathways of stomach carcinogenesis may exist for poorly differentiated and well-differentiated stomach cancers. Some of the latter may develop by a cumulative series of gene alterations similar to those of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

LOH:

loss of heterozygosity

References

  • Asaka M, Kimura T, Kudo M, Takeda H, Mitani S, Miyazaki T, Miki K (1992) Relationship ofHelicobacter pylori to serum pepsinogens in an asymptomatic Japanese population. Gastroenterology 102:760–766

    PubMed  Google Scholar 

  • Ayhan A, Yasui W, Yokozaki H, Ito H, Tahara E (1992) Genetic abnormalities and expression of p53 in human colon carcinomas. Int J Oncol 1:431–437

    Google Scholar 

  • Bhargava M, Joseph A, Knesel J, Halaban R, Li Y, Pang S, Goldberg, I, Setter E, Donovan MA, Zarnegar R, Michalopoulos GA, Nakamura T, Faletto D, Rosen EM (1992) Scatter factor and hepatocyte growth factor: activities, properties, and mechanism. Cell Growth Differ 3:11–20

    PubMed  Google Scholar 

  • Blackburn EH (1991) Structure and function of telomeres. Nature 350:569–573

    PubMed  Google Scholar 

  • Bottaro DP, Rubin JS, Faletto DL, Chan AM-L, Kmiecik TE, Vande Woude GF, Aaronson SA (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251:802–804

    PubMed  Google Scholar 

  • Chan AM-L, Rubin JS, Bottaro DP, Hirschfield DW, Chedid M, Aaronson SA (1991) Identification of a commpetitive HGF antagonist encoded by an alternative transcript. Science 254:1382–1385

    PubMed  Google Scholar 

  • Ciardiello F, Dono R, Kim N, Persico MG, Salomon DS (1991) Expression ofcripto, a novel gene of the epidermal growth factor gene family, leads to in vitro transformation of a normal mouse mammary epithelial cell line. Cancer Res 51:1051–1054

    PubMed  Google Scholar 

  • Ciccodicola A, Dono R, Obici S, Simeone A, Zollo M, Persico MG (1989) Molecular characterization of a gene of the “EGF family” expressed in undifferentiated human NTERA2 teratocarcinoma cells. EMBO J 8:1987–1991

    PubMed  Google Scholar 

  • Cooper CS, Park M, Blair DG, Tainsky MA, Heubner K, Croce CM, Vande Woude GF (1984) Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311:29–33

    PubMed  Google Scholar 

  • Correa P (1991) The new era of cancer epidemiology. Cancer Epidemiol. Biomarkers Prevent 1:5–11

    Google Scholar 

  • Daar IO, White GA, Schuh SM, Ferris DK, Vande Woude GF (1991)tpr-met oncogene product induces maturation-producing factor activation inXenopus oocytes. Mol Cell Biol 11:5985–5991

    PubMed  Google Scholar 

  • Dean M, Park M, Le Beau MM, Robins TS, Diaz MO, Rowley JD, Blair DG, Vande Woude GF (1985) The humanmet oncogene is related to the tyrosine kinase oncogene. Nature 318:385–388

    PubMed  Google Scholar 

  • Di Renzo MF, Narsimhan RP, Olivero M, Bretti S, Giordano S, Medico E, Gaglia P, Zara P, Comoglio PM (1991) Expression of the Met/HGF receptor in normal and neoplastic human tissues. Onco-gene 6:1997–2003

    Google Scholar 

  • Faletto DL, Tsarfaty I, Kmiecik TE, Gonzatti M, Suzuki T, Vande Woude GF (1992) Evidence for non-convalent clusters of the c-met proto-oncogene product. Oncogene 7:1149–1157

    PubMed  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Google Scholar 

  • Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, Vogelstein B (1990) Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–56

    PubMed  Google Scholar 

  • Gonzatti-Haces M, Seth A, Park M, Copeland T, Oroszlan S, Vande Woude GF (1988) Characterization of theTPR-MET oncogene p65 and theMET protooncogene p140 protein-tyrosine kinases. Proc Natl Acad Sci USA 85:21–25

    PubMed  Google Scholar 

  • Gray JT, Celander DW, Price CM, Cech TR (1991) Cloning and expression of genes for the oxytricha telomere-binding protein: specific subunit interactions in the telomeric complex. Cell 67:807–814

    PubMed  Google Scholar 

  • Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M, Sargeant L, Krapcho K, Wolff E, Burt R, Hughes JP, Warrington J, McPherson J, Wasmuth J, Paslier DL, Abderrahim H, Cohen D, Leppert M, White R (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66:589–600

    PubMed  Google Scholar 

  • Harris CC (1991) Chemical and physical carcinogens: advances and perspectives for the 1990. Cancer Res 51: [Suppl]:5011s-5086s

    Google Scholar 

  • Hastie ND, Dempster M, Dunlop MG Thompson AM, Green DK, Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866–868

    PubMed  Google Scholar 

  • Hattori Y, Odagiri H, Nakatani H, Miyagawa K, Naito K, Sakamoto H, Katoh O, Yoshida T, Sugimura T, Terada M (1990) k-sam, and amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes. Proc Natl Acad Sci USA 87:5983–5987

    PubMed  Google Scholar 

  • Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990)bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

    PubMed  Google Scholar 

  • Hockenbery DM, Zutter M, Hickey W, Nahm M, Korsmeyer SJ (1991) BCL 2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc Natl Acad Sci USA 88:6961–6965

    PubMed  Google Scholar 

  • Hollstein MC, Metealf RA, Welsh JA, Montesano R, Harris CC (1990) Frequent mutation of the p53 gene in human esophageal cancer. Proc Natl Acid Sci USA 87:9958–9961

    Google Scholar 

  • Hollstein MC, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–50

    PubMed  Google Scholar 

  • Horii A, Nakatsuru S, Miyoshi Y, Ichii S, Nagase H, Kato Y, Yanagisawa A, Nakamura Y (1992) TheAPC gene, responsible for famillal adenomatous polyposis, is mutated in human gastric cancer. Cancer Res 52:3231–3233

    PubMed  Google Scholar 

  • Ito M, Yasui W, Kyo E, Yokozaki H, Nakayama H, Ito H, Tahara E (1992a) Growth inhibition of transforming growth factor-β on human gastric carcinoma cells: receptor and postreceptor signaling. Cancer Res 52:295–300

    PubMed  Google Scholar 

  • Ito M, Yasui W, Nakayama H, Yokozaki H, Ito H, Tahara E (1992b) Reduced levels of transforming growth factor-β type I receptor in human gastric carcinomas. Jpn J Cancer Res 83:86–92

    PubMed  Google Scholar 

  • Joslyn G, Carlson M, Thliveris A, Albertsen H, Gelbert L, Samowitz W, Groden J, Stevens J, Spirio L, Robertson M, Sargeant L, Krapcho K, Wolff E, Burt R, Hughes JP, Warrington J, McPherson J, Wasmuth J, Paslier DL, Abderrahim H, Cohen D, Leppert M, White R (1991) Identification of deletion mutations and three new genes at the familial polyposis locus. Cell 66:601–613

    PubMed  Google Scholar 

  • Kameda T, Yasui W, Yoshida K, Tsujino T, Nakayama H, Ito M, Ito H, Tahara E (1990) Expression of ERBB2 in human gastric carcinomas: relationship between p185ERBB2 expression and the gene amplification. Cancer Res 50:8002–8009

    PubMed  Google Scholar 

  • Katoh M, Hattori Y, Sasaki H, Tanaka M, Sugano K, Yazaki Y, Sugimura T, Terada M (1992) k-sam gene encodes secreted as well as transmembrane receptor tyrosine kinase. Proc Natl Acad Sci USA 89:2960–2964

    PubMed  Google Scholar 

  • Kim J-H, Takahashi T, Chiba I, Park J-G, Birrer MJ, Roh JK, Lee HD Kim J-P, Minna JD, Gazdar AF (1991) Occurrence of p53 gene abnormalities in gastric carcinoma tumors and cell lines. JNCI 83:938–943

    PubMed  Google Scholar 

  • Kinzler KW, Nilbert MC, Su L-K, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D, Finniear R, Markhan A, Groffen J, Boguski MS, Altschul SF, Horii A, Ando H, Miyoshi Y, Miki Y, Nishisho I, Nakamura Y (1991) Identification of FAP locus genes from chromosome 5q21. Science 253:661–665

    PubMed  Google Scholar 

  • Kuniyasu H, Yoshida K, Yokozaki H, Yasui W, Ito H, Toge T, Ciardiello F, Persico MG, Saeki T, Salomon DS, Tahara E (1991) Expression ofcripto, a novel gene of the epidermal growth factor family, in human gastrointestinal carcinomas. Jpn J Cancer Res 82:969–973

    PubMed  Google Scholar 

  • Kuniyasu H, Yasui W, Sano T, Yokozaki H, Sasaki N, Toge T, Tahara E (1992) Gene alteration and mRNA expression of c-MET gene in human gastric carcinomas. Jpn Res Soc Gastroenterol Carcinog 4:19–25

    Google Scholar 

  • Laurent-Puig P, Olschwang S, Delattre O, Validire P, Melot T, Mosseri V, Salmon RJ, Thomas G (1991) Association of Ki-ras mutation with differentiation and tumor-formation pathways in colorectal carcinoma. Int J Cancer 49:220–223

    PubMed  Google Scholar 

  • Lemoine NR, Jain S, Hughes CM, Staddon SL, Maillet B, Hall PA, Kloppel G (1992) Ki-ras oncogene activation in preinvasive pancreatic cancer. Gastroenterology 102:230–236

    PubMed  Google Scholar 

  • Lin HY, Wang X-F, Ng-Eaton E, Weinberg RA, Lodish HF (1992) Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell 68:775–785

    PubMed  Google Scholar 

  • Lopez-Casillas F, Cheifetz S, Doody J, Andres J, Lane WS, Massague J (1991) Structure and expression of the membrane protoeglycan beta-glycan, a component of the TGF-beta receptor system. Cell 67:785–795

    PubMed  Google Scholar 

  • Martin HM, Filipe MI, Morris RW, Lane DP, Silvestre F (1992) p53 expression and prognosis in gastric carcinoma. Int J Cancer 50:859–862

    PubMed  Google Scholar 

  • Marx J (1989) Many gene changes found in cancer. Science 246:1386–1388

    PubMed  Google Scholar 

  • Matsuyoshi N (1992) Cadherins in cancer cell detachment. Cell Technol 11 [Suppl 1]:s5-s11

    Google Scholar 

  • Mattar R, Yokozaki H, Yasui W, Ito H, Tahara E (1992) p53 gene mutations in gastric cancer cell lines. Oncology (Life Sci Adv) 11:7–12

    Google Scholar 

  • Miyazawa K, Kitamura A, Naka D, Kitamura N (1991) An alternatively processed mRNA generated from human hepatocyte growth factor gene. Eur J Biochem 197:15–22

    PubMed  Google Scholar 

  • Montesano R, Matsumoto K, Nakamura T, Orci L (1991) Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67:901–908

    PubMed  Google Scholar 

  • Nagafuchi A, Takeichi M, Tsukita S (1991) The 102 kd cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell 65:849–857

    PubMed  Google Scholar 

  • Nakamura T, Nishizawa T, Hagiya M, Saeki T, Shimonishi M, Sugimura A, Tashiro K, Shimizu S (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342:440–443

    PubMed  Google Scholar 

  • Nakatani H, Sakamoto H, Yoshida T, Yokota J, Tahara E, Sugimura T, Terada M (1990) Isolation of an amplified DNA sequence in stomach cancer. Jpn J Cancer Res 81:707–710

    PubMed  Google Scholar 

  • Naldini L, Vgna E, Narsimhan RP, Gaudino G, Zarnegar R, Michalopoulos GK, Comoglio PM (1991) Hepatocyte growth factor (HGF) stimulated the tyrosine kinase activity of the receptor encoded by the protooncogene c-MET. Oncogene 6:501–504

    PubMed  Google Scholar 

  • Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K, Utsunomiya J, Baba S, Hedge P, Markham A, Krush AJ, Peterson G, Hamilton SR, Nilbert MC, Levy DB, Bryan TM, Preisinger AC, Smith KJ, Su L-K, Ninzler KW, Vogelstein B (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253:665–669

    PubMed  Google Scholar 

  • Park M, Dean M, Cooper CS, Schmidt M, O'Brien SJ, Blair DG, Vande Woude GF (1986) Mechanism ofmet oncogene activation. Cell 45:895–904

    PubMed  Google Scholar 

  • Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude G (1987) Sequence ofMET protooncogene cDNA has features characteristic of tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci USA 84:6379–6383

    PubMed  Google Scholar 

  • Park M, Testa JR, Blair DG, Parsa NZ, Vande Woude GF (1988) Two rearrangedMET alleles in MNNG-HOS cells reveal the orientation ofMET on chromosome 7 to other markers tightly linked to the cystic fibrosis locus. Proc Natl Acad Sci USA 85:2667–2671

    PubMed  Google Scholar 

  • Prat M, Narsimhan RP, Crepaldi T, Nicotra MR, Natali PG, Comoglio PM (1991) The receptor encoded by the human c-met oncogene is expressed in hepatocytes, epithelial cells and solid tumors. Int J Cancer 49:323–328

    PubMed  Google Scholar 

  • Sano T, Tsujino T, Yoshida K, Nakayama H, Hurama K, Ito H, Nakamura Y, Kajiyama G, Tahara E (1991) Frequent loss of heterozygosity on chromosomes 1q, 5q, and 17p in human gastric carcinomas. Cancer Res 51:2926–2931

    PubMed  Google Scholar 

  • Shimoyama Y, Hirohashi S (1991) Expression of E- and P-cadherin in gastric carcinomas. Cancer Res 51:2185–2192

    PubMed  Google Scholar 

  • Soman NR, Correa P, Ruiz BA, Wogan GN (1991) TheTPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc Natl Acad Sci USA 88:4892–4896

    PubMed  Google Scholar 

  • Sugimura T, Fujimura S, Baba T (1970) Tumor production in the glandular stomch and alimentary tract of the rat byN-methyl-N′-nitro-N-nitrosoguanidine. Cancer Res 30:455–465

    PubMed  Google Scholar 

  • Tahara E (1990) Growth factors and oncogenes in human gastrointestinal carcinomas. J Cancer Res Clin Oncol 116:121–131

    PubMed  Google Scholar 

  • Tahara E (1992) Carcinogenesis and progression of human gastric cancer. Trans Soc Pathol Jpn 81:21–49

    Google Scholar 

  • Tamura G, Kihana T, Nomura K, Terada M, Sugimura T, Hirohashi S (1991) Detection of frequent p53 gene mutations in primary gastric cancer by cell sorting and polymerase chain reaction single-stranded conformation polymorphism analysis. Cancer Res 51:3056–3058

    PubMed  Google Scholar 

  • Tanimoto H, Yoshida K, Yokozaki H, Yasui W, Nakayama H, Ito H, Ohama K, Tahara E (1991) Expression of basic fibroblast growth factor in human gastric carcinomas. Virchows Arch [B] 61:263–267

    Google Scholar 

  • Tempest PR, Cooper CS, Major GN (1986) The activated humanmet gene encodes a protein tyrosine kinase. FEBS J 209:357–361

    Google Scholar 

  • Testa JR, Park M, Blair DG, Kalbakji A, Arden K, Vande Woude GF (1990) Analysis by pulse field gel electrophoresis reveals complex rearrangements in twoMET alleles in a chemically-treated human cell line, MNNG-HOS. Oncogene 5:1565–1571

    PubMed  Google Scholar 

  • Tohdo H, Yokozaki H, Ito H, Haruma K, Kajiyama G, Tahara E (1992) Detection of mutations of p53 gene and K-ras gene in gastric adenoma. 51st Annual Meeting of the Japanese Cancer Association (Osaka, Japan) Jpn. J Cancer Res. (Tokyo)

  • Tsuda T, Yoshida K, Tsujino T, Nakayama H, Kajiyama G, Tahara E (1989) Coexpression of platelet-derived growth factor (PDGF) A-chain and PDGF receptor genes in human gastric carcinomas. Jpn J Cancer Res 80:813–817

    PubMed  Google Scholar 

  • Tsujino T, Yoshida K, Nakayama H, Ito H, Shimosato T, Tahara E (1990) Alterations of oncogenes in metastatic tumours of human gastric carcinomas. Br J Cancer 62:226–230

    PubMed  Google Scholar 

  • Uchino S, Tsuda H, Noguchi M, Yokota J, Terada M, Saito T, Kobayashi M, Sugimura T, Hirohashi S (1992) Frequent loss of heterozygosity at the DCC locus in gastric cancer. Cancer Res 52:3099–3102

    PubMed  Google Scholar 

  • Wang, X-F, Lin H-Y, Ng0Eaton E, Downward J, Lodish HF, Weinberg RA (1991) Expression cloning and characterization of the TGF-beta type III receptor. Cell 67:797–805

    PubMed  Google Scholar 

  • Yamada Y, Yoshida T, Hayashi K, Sekiya T, Yokota J, Hirohashi S, Nakatani K, Nakao H, Sugimura T, Terada M (1991) p53 gene mutations in gastric cancer metastases and gastric cancer cell lines derived from metastases. Cancer Res 51:5800–5805

    PubMed  Google Scholar 

  • Yokozaki H, Kuniyasu H, Kitadai Y, Nishimura K, Todo H, Ayhan A, Yasui W, Ito H, Tahara E (1992) p53 point mutations in primary human gastric carcinomas. J Cancer Res Clin Oncol (in press)

  • Yoshida K, Yokozaki H, Niimoto M, Ito M, Tahara E (1989) Expression of TGF-beta and procollagen type I and type III in human gastric carcinomas. Int J Cancer 44:394–398

    PubMed  Google Scholar 

  • Yoshida K, Tsujino T, Yasui W, Kameda T, Sano T, Nakayama H, Toge T, Tahara E (1990) Induction of growth factor-receptor and metallo-proteinase genes by epidermal growth factor and/or transforming growth factor-alpha in human gastric carcinoma cell line MKN-28. Jpn J Cancer Res 81:793–798

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The “Journal of Cancer Research and Clinical Oncology” publishes in loose succession “Editorials” and “Guest editorials” on current and/or controversial problems in experimental and clinical oncology. These contributions represent exclusively the personal opinion of the author The Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahara, E. Molecular mechanism of stomach carcinogenesis. J Cancer Res Clin Oncol 119, 265–272 (1993). https://doi.org/10.1007/BF01212724

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212724

Key words

Navigation