Skip to main content
Log in

Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of the locus coeruleus in the rat

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

Electrical stimulation techniques were employed in the chloral hydrate anaesthetized male rat to evaluate if the pontine noradrenergic nucleus locus coeruleus can influence the activity of midbrain dopamine neurons in the ventral tegmental area and zona compacta, substantia nigra. Single-pulse locus coeruleus stimulation evoked an excitation, followed by an inhibition, of the electrical activity of single midbrain dopamine neurons. Neither of these responses were observed in animals pretreated with reserpine, implicating noradrenaline as a mediator. The α1-adrenoceptor antagonist prazosin decreased the excitation, while other adrenoceptor antagonists were without general effect. Burst-type stimulation produced only a more long-lasting inhibition. The influence from the locus coeruleus on midbrain dopamine neurons could be important in behavioural situations involving novelty and reward, and might also be of importance for the actions of psychotropic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aghajanian GK (1984) The physiology of central α- and β-adrenoceptors. In: Usdin E, Carlsson A, Dahlström A, Engel J (eds) Catecholamines: neuropharmacology and central nervous system — theoretical aspects. Alan R Liss, New York, pp 85–92

    Google Scholar 

  • Aghajanian GK (1985) Modulation of a transient outward current in serotonergic neurones by α1-adrenoceptors. Nature 315: 501–503

    Google Scholar 

  • Aghajanian GK, Bunney BS (1977) Dopamine “autoreceptors”: pharmacological characterization by microiontophoretic single cell recording studies. Naunyn Schmiedebergs Arch Pharmacol 297: 1–7

    Google Scholar 

  • Andén N-E, Grabowska M (1976) Pharmacological evidence for a stimulation of dopamine neurons by noradrenaline neurons in the brain. Eur J Pharmacol 39: 275–282

    Google Scholar 

  • Aston-Jones G (1985) Behavioural functions of locus coeruleus derived from cellular attributes. Physiol Psychol 13: 118–126

    Google Scholar 

  • Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT (1986) The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234: 734–737

    Google Scholar 

  • Aston-Jones G, Shipley MT, Ennis M, Williams JT, Pieribone VA (1990) Restricted afferent control of locus coeruleus neurons revealed by anatomic, physiologic and pharmacologic studies. In: Marsden CA, Heal DJ (eds) The pharmacology of noradrenaline in the central nervous system. Oxford University Press, Oxford, pp 187–247

    Google Scholar 

  • Aston-Jones G, Chiang C, Alexinsky T (1991) Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. In: Barnes CD, Pompeiano O (eds) Neurobiology of the locus coeruleus. Elsevier, Amsterdam, pp 501–520 (Prog Brain Res, vol 88)

    Google Scholar 

  • Bartfai T, Bedecs K, Land T, Langel Ü, Bertorelli R, Girotti P, Consolo S, Xu X, Wiesenfeld-Hallin Z, Nilsson S, Pieribone VA, Hökfelt T (1991) M-15: high-affinity chimeric peptide that blocks the neuronal actions of galanin in the hippocampus, locus coeruleus, and spinal cord. Proc Natl Acad Sci USA 88: 10961–10965

    Google Scholar 

  • Bean AJ, Roth RH (1991) Extracellular dopamine and neurotensin in rat prefrontal cortex in vivo: effects of medial forebrain bundle stimulation frequency, stimulation pattern, and dopamine autoreceptors. J Neurosci 11: 2694–2702

    Google Scholar 

  • Bunney BS, Aghajanian GK (1976) The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique. Brain Res 117: 423–435

    Google Scholar 

  • Caffé AR, van Leeuwen FW, Buijs RM, van der Gugten J (1988) Vasopressin and noradrenaline coexistence in the rat locus ceruleus: differential decreases of their levels in distant brain areas after thermal and neurotoxic lesions. Brain Res 459: 386–390

    Google Scholar 

  • Carlsson A (1966) Drugs which block the storage of 5-hydroxytryptamine and related amines. In: Erspamer V (ed) 5-Hydroxytryptamine and related indolealkylamines. Springer, Berlin Heidelberg New York Tokyo, pp 529–592 (Handbook Exp Pharmacol, vol 19)

    Google Scholar 

  • Cohen BM (1988) Neuroleptic drugs in the treatment of acute psychosis: how much do we really know? In: Casey DE, Christensen AV (eds) Psychopharmacology: current trends. Springer, Berlin Heidelberg New York Tokyo, pp 46–61

    Google Scholar 

  • Collingridge GL, James TA, LacLeod NK (1979) Neurochemical and electrophysiological evidence for a projection from the locus coeruleus to the substantia nigra. J Physiol (Lond) 290: 44 P

  • Dinan TG, Aston-Jones G (1984) Acute haloperidol increases impulse activity of brain noradrenergic neurons. Brain Res 307: 359–362

    Google Scholar 

  • Dinan TG, Aston-Jones G (1985) Chronic haloperidol inactivates brain noradrenergic neurons. Brain Res 325: 385–388

    Google Scholar 

  • Donaldson IM, Dolphin A, Jenner P, Marsden CCD, Pycock C (1986) The roles of noradrenaline and dopamine in contraversive circling behaviour seen after unilateral electrolytic lesions of the locus coeruleus. Eur J Pharmacol 39: 179–191

    Google Scholar 

  • Engberg G, Svensson TH (1979) Amphetamine-induced inhibition of central noradrenergic neurons: a pharmacological analysis. Life Sci 24: 2245–2254

    Google Scholar 

  • Ennis M, Aston-Jones G (1987) Two physiologically distinct populations of neurons in the ventrolateral medulla innervate the locus coeruleus. Brain Res 425: 275–282

    Google Scholar 

  • Fibiger HC, Phillips AG (1986) Reward, motivation, cognition: psychobiology of the mesotelencephalic dopamine systems. In: Bloom FE (ed) Handbook of physiology, section I. The nervous system, vol IV. American Physiological Society, Bethesda MD, pp 647–675

    Google Scholar 

  • Foote SL, Bloom FE, Aston Jones G (1983) Nucleus locus coeruleus: new evidence of anatomical and physiological specificty. Physiol Rev 63: 844–914

    Google Scholar 

  • Fukuda A, Minami T, Nabekura J, Oomura Y (1987) The effects of noradrenaline on neurones in the rat dorsal motor nucleus of the vagus, in vitro. J Physiol (Lond) 393: 213–231

    Google Scholar 

  • Gaspar P, Stepniewska I, Kaas JH (1992) Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys. J Comp Neurol 325: 1–21

    Google Scholar 

  • Gerfen CR, Staines WA, Arbuthnott GW, Fibiger HC (1982) Crossed connections of the substantia nigra in the rat. J Comp Neurol 207: 283–303

    Google Scholar 

  • Gessa GL, Serra G (eds) (1990) Dopamine and mental depression. Pergamon Press, Oxford

    Google Scholar 

  • Grace AA, Bunney BS (1979) Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory interneurons. Eur J Pharmacol 59: 211–218

    Google Scholar 

  • Grace AA, Bunney BS (1983) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons. I. Identification and characterization. Neuroscience 10: 301–315

    Google Scholar 

  • Grenhoff J (1990) Firing pattern in midbrain dopamine neurons. Thesis, Stockholm

  • Grenhoff J, Svensson TH (1988) Clonidine regularizes substantia nigra dopamine cell firing. Life Sci 42: 2003–2009

    Google Scholar 

  • Grenhoff J, Svensson TH (1989) Clonidine modulates dopamine cell firing in rat ventral tegmental area. Eur J Pharmacol 165: 11–18

    Google Scholar 

  • Grenhoff J, Svensson TH (1993) Prazosin modulates the firing pattern of dopamine neurons in rat ventral tegmental area. Eur J Pharmacol (in press)

  • Hervé D, Blanc G, Glowinski J, Tassin JP (1982) Reduction of dopamine utilization in the prefrontal cortex but not in the nucleus accumbens after selective destruction of noradrenergic fibers innervating the ventral tegmental area in the rat. Brain Res 237: 510–516

    Google Scholar 

  • Hoffman BB, Lefkowitz RJ (1990) Adrenergic receptor antagonists. In: Gilman AG, Rall TW, Nies AS, Taylor P (eds) Goodman and Gilman's the pharmacological basis of therapeutics, 8th ed. Pergamon Press, New York, pp 221–243

    Google Scholar 

  • Holets VR, Hökfelt T, Rökaeus Å, Terenius L, Goldstein M (1988) Locus coeruleus neurons in the rat containing neuropeptide Y, tyrosine hydroxylase or galanin and their efferent projections to the spinal cord, cerebral cortex and hypothalamus. Neuroscience 24: 893–906

    Google Scholar 

  • Hornykiewicz O (1982) Brain catecholamines in schizophrenia — a good case for noradrenaline. Nature 299: 484–486

    Google Scholar 

  • Hornykiewicz O, Kish SJ (1986) Biochemical pathophysiology of Parkinson's disease. In: Yahr MD, Bergmann KJ (eds) Advances in neurology, vol 45. Raven Press, New York, pp 19–34

    Google Scholar 

  • Jacobs BL, Abercrombie ED, Fornal CA, Levine ES, Morilak DA, Stafford IL (1991) Single-unit and physiological analyses of brain norepinephrine function in behaving animals. In: Barnes CD, Pompeiano O (eds) Neurobiology of the locus coeruleus. Elsevier, Amsterdam, pp 159–165 (Prog Brain Res, vol 88)

    Google Scholar 

  • Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12: 483–488

    Google Scholar 

  • Jones BE, Moore RY (1977) Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res 127: 23–53

    Google Scholar 

  • Jones BE, Yang T-Z (1985) The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde tracing in the rat. J Comp Neurol 242: 56–92

    Google Scholar 

  • Jones LS, Gauger LL, Davis JN (1985) Anatomy of brain alpha1-adrenergic receptors: in vitro autoradiography with [125I]-HEAT. J Comp Neurol 231: 190–208

    Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1987) Dopamine acts on D2 receptors to increase postassium conductance in neurones of the rat substantia nigra zona compacta. J Physiol (Lond) 392: 397–416

    Google Scholar 

  • Lategan AJ, Marien MR, Colpaert FC (1990) Effects of locus coeruleus lesions on the release of endogenous dopamine in the rat nucleus accumbens and caudate nucleus as determined by intracerebral microdialysis. Brain Res 523: 134–138

    Google Scholar 

  • Lategan AJ, Marien MR, Colpaert FC (1992) Suppression of nigrostriatal and mesolimbic dopamine release in vivo following noradrenaline depletion by DSP-4: a microdialysis study. Life Sci 50: 995–999

    Google Scholar 

  • Ljungberg T, Apicella P, Schultz W (1991) Responses of monkey dopamine neurons during learning of behavioural reactions. J Neurophysiol 67: 145–163

    Google Scholar 

  • Lodge D, Caddy KWT, Headley PM, Biscoe TJ (1974) The location of neurones with pontamine sky blue. Neuropharmacology 13: 481–485

    Google Scholar 

  • Lundberg JM, Hökfelt T (1983) Coexistence of peptides and classical transmitters. Trends Neurosci 6: 325–333

    Google Scholar 

  • Marwaha J, Aghajanian GK (1982a) Relative potencies of alpha-1 and alpha-2 antagonists in the locus ceruleus, dorsal raphe and dorsal lateral geniculate nuclei: an electrophysiological study. J Pharmacol Exp Ther 222: 287–293

    Google Scholar 

  • Marwaha J, Aghajanian GK (1982b) Typical and atypical neuroleptics are potent antagonists at aradrenoceptors of the dorsal lateral geniculate nucleus. Naunyn Schmiedebergs Arch Pharmacol 321: 32–37

    Google Scholar 

  • Mavridis M, Colpaert FC, Millan MJ (1991a) Differential modulation of (+)-amphet-amine-induced rotation in unilateral substantia nigra-lesioned rats by α1 as compared to α2 agonists and antagonists. Brain Res 562: 216–224

    Google Scholar 

  • Mavridis M, Degryse A-D, Lategan AJ, Marien MR, Colpaert FC (1991b) Effects of locus coeruleus lesions on parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: a possible role for the locus coeruleus in the progression of Parkinson's disease. Neuroscience 41: 507–523

    Google Scholar 

  • McCormick DA, Prince DA (1988) Noradrenergic modulation of firing pattern in guinea pig and cat thalamic neurons, in vitro. J Neurophysiol 59: 978–996

    Google Scholar 

  • Menkes DB, Baraban JM, Aghajanian GK (1981) Prazosin selectively antagonizes neuronal responses mediated by aradrenoceptors in brain. Naunyn Schmiedebergs Arch Pharmacol 317: 273–275

    Google Scholar 

  • Miller JD, Farber J, Gatz P, Roffwarg H, German DC (1983) Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and waking in the rat. Brain Res 273: 133–141

    Google Scholar 

  • Nishino H, Ono T, Muramoto K, Fukuda M, Sasaki K (1987) Neuronal activity in the ventral tegmental area (VTA) during motivated bar press feeding in the monkey. Brain Res 413: 302–313

    Google Scholar 

  • Nitsch C, Riesenberg R (1988) Immunocytochemical demonstration of GABAergic synaptic connections in rat substantia nigra after different lesions of the striatonigral projection. Brain Res 461: 127–142

    Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res Rev 12: 117–165

    Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd ed. Academic Press, Sydney

    Google Scholar 

  • Phillipson OT (1979) Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat. J Comp Neurol 187: 117–43

    Google Scholar 

  • Rainbow TC, Parsons B, Wolfe BB (1984) Quantitative autoradiography of beta 1- and beta 2-adrenergic receptors in rat brain. Proc Natl Acad Sci USA 81: 1585–1589

    Google Scholar 

  • Rogawski MA, Aghajanian GK (1982) Activation of lateral geniculate neurons by locus coeruleus or dorsal noradrenergic bundle stimulation: selective blockade by the alpha1-adrenoceptor antagonist prazosin. Brain Res 250: 31–39

    Google Scholar 

  • Romo R, Schultz W (1990) Dopamine neurons of the monkey midbrain: contingencies of responses to active touch during self-initiated arm movements. J Neurophysiol 63: 592–606

    Google Scholar 

  • Schultz W (1986) Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. J Neurophysiol 56: 1439–1461

    Google Scholar 

  • Seutin V, Verbanck P, Massotte L, Dresse A (1989) Galanin decreases the activity of locus coeruleus neurons in vitro. Eur J Pharmacol 164: 373–376

    Google Scholar 

  • Simon H, Le Moal M, Calas A (1979a) Efferents and afferents of the ventral tegmental-A 10 region studied after local injection of [3H]leucine and horseradish peroxidase. Brain Res 178: 17–40

    Google Scholar 

  • Simon H, Le Moal M, Stinus L, Calas A (1979b) Anatomical relationships between the ventral mesencephalic tegmentum — A 10 region and the locus coeruleus as demonstrated by anterograde and retrograde tracing techniques. J Neural Transm 44: 77–86

    Google Scholar 

  • Strecker RL, Jacobs BL (1987) Dopaminergic unit activity during behavior. In: Chiodo LA, Freeman AS (eds) Neurophysiology of dopaminergic systems — current status and clinical perspectives. Lakeshore Publishing Company, Grosse Pointe, MI, pp 165–185

    Google Scholar 

  • Svensson TH (1987) Peripheral, autonomic regulation of locus coeruleus noradrenergic neurons in the brain: putative implications for psychiatry and psychopharmacology. Psychopharmacology 92: 1–7

    Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9: 321–353

    Google Scholar 

  • Tassin JP, Lavielle S, Hervé D, Blanc G, Thierry AM, Alvarez C, Berger B, Glowinski J (1979) Collateral sprouting and reduced activity of the rat mesocortical dopaminergic neurons after selective destruction of the ascending noradrenergic bundles. Neuroscience 4: 1569–1582

    Google Scholar 

  • Trovero F, Blanc G, Hervé D, Vézina P, Glowinski J, Tassin J-P (1991) Contribution of an α1-adrenergic receptor subtype to the expression of the “ventral tegmental area syndrome”. Neuroscience 47: 69–76

    Google Scholar 

  • van Kammen DP, Peters J, Yao J, van Kammen WB, Neylan T, Shaw D, Linnoila M (1990) Norepinephrine in acute exacerbations of chronic schizophrenia. Arch Gen Psychiatry 47: 161–168

    Google Scholar 

  • White FJ, Wang RY (1984) Pharmacological characterization of dopamine autoreceptors in the rat ventral tegmental area: microiontophoretic studies. J Pharmacol Exp Ther 231: 275–280

    Google Scholar 

  • Wise RA (1987) The role of reward pathways in the development of drug dependence. Pharmacol Ther 35: 227–263

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grenhoff, J., Nisell, M., Ferré, S. et al. Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of the locus coeruleus in the rat. J. Neural Transmission 93, 11–25 (1993). https://doi.org/10.1007/BF01244934

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01244934

Keywords

Navigation