Skip to main content
Log in

Platelets and cancer metastasis: A causal relationship?

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cancer metastasis is a highly coordinated and dynamic multistep process in which cancer cells undergo extensive interactions with various host cells before they establish a secondary metastatic colony. Ample morphological studies have documented the close association of circulating tumor cells with host platelets. Several lines of evidence provide strong support for the concept that tumor cell-platelet interactions (i.e., TCIPA) significantly contribute to hematogenous metastasis. Clinically, cancer patients with advanced diseases are characterized by a variety of thromboembolic disorders including thrombocytosis. Pharmacologically, various anti-platelet agents/anticoagulants have demonstrated potent inhibitory effects on tumor cell-platelet interactions as well as spontaneous or experimental metastasis. Experimentally, interference with many of the intermediate steps of tumor cell-platelet interactions has resulted in diminished platelet aggregation induced by tumor cells and blocked cancer metastasis. Platelet interaction with tumor cells is a sequential process which involves two general types of mediators, i.e., membrane-bound molecules (adhesion molecules) and soluble release products. αIIbβ3 integrin receptors present on both platelets as well as on tumor cells and 12(S)-HETE, a 12-lipoxygenase metabolite of arachidonic acid, are prototypical examples of each category. Mechanistically, platelets may contribute to metastasis by: (1) stabilizing tumor cell arrest in the vasculature, (2) stimulating tumor cell proliferation, (3) promoting tumor cells extravasation by potentiating tumor cell-induced endothelial cell retraction, and (4) enhancing tumor cell interaction with the extracellular matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WeissL, OrrFW, HonnKV: Interaction of cancer cells with the microvasculature during metastasis. FASEB J 2: 12–21, 1988

    PubMed  Google Scholar 

  2. MareelMM, DeBaetselierP, VanRoyFM: Mechanisms of Invasion and Metastasis. CRC Press, Boca Raton, FL, 1991, pp 221–266

    Google Scholar 

  3. AeedPA, NakajimaM, WelchDR: The role of polymorphonuclear leukocyte (PMN) on the growth and metastatic potential of 13762 NF mammary adenocarcinoma cells. Int J Cancer 42: 748–759, 1988

    PubMed  Google Scholar 

  4. HonnKV, SloaneBF: Hemostatic mechanisms and metastasis. Martinus Nijhoff Publishing, Boston, 1984

    Google Scholar 

  5. HonnKV, OnodaJM, MenterDG, CavanaughPG, CrissmanJD, TaylorJD, SloaneBF: Platelet-tumor cell interactions as targets for antimetastatic therapy. In: HonnKV, PowersWE, SloaneBF (eds) Mechanisms of Cancer Metastasis. Martinus Nijhoff Publishing, Boston, 1986, pp 117–144

    Google Scholar 

  6. GasicG: Role of plasma, platelets, and endothelial cells in tumor metastasis. Cancer Metastasis Rev 3: 99–116, 1984

    PubMed  Google Scholar 

  7. GrignaniG, PacchiariniL, PagllarinoM: The possible role of blood platelets in tumor growth and dissemination. Haematologica 71: 245–255, 1986

    PubMed  Google Scholar 

  8. MannucciPM, CattaneoM, CancianiMT, ManiezzoM, VagliniM, CascinelliN: Early presence of activated (‘exhausted’) platelets in malignant tumors (breast adenocarcinoma and malignant melanoma). Eur J Cancer Clin Oncol 25: 1413–1417, 1989

    PubMed  Google Scholar 

  9. HonnKV, CiconeB, SkoffA: Prostacyclin: a potent antimetastatic agent. Science 212: 1270–1272, 1981

    PubMed  Google Scholar 

  10. WoodS: Pathogenesis of metastasis formation observedin vivo in the rabbit ear chamber. Arch Pathol 66: 550–568, 1958

    Google Scholar 

  11. JonesJD, WallaceAC, FraserEF: Sequence of events in experimental metastasis of Walker 256 tumor: light immunofluorescent and electron microscopic observations. JNCI 46: 493–504, 1971

    PubMed  Google Scholar 

  12. CrissmanJD, CerraRF, SarkarF: The morphology of cancer cell arrest and extravasation. In: OrrFW, BuchananMR, WeissL (eds) Microcirculation in Cancer Metastasis. CRC Press, Inc., Boca Raton, Boston Ann Arbor London, 1991, pp 205–215

    Google Scholar 

  13. HonnKV, GrossiIM, TimarJ, ChopraH, TaylorJD: Platelets and cancer metastasis. In: OrrFW, BuchananM, WeissL (eds) Microcirculation in Cancer Metastasis. CRC Press, Inc., Boca Raton, Boston Ann Arbor London, 1991, pp 93–109

    Google Scholar 

  14. HonnKW, TangDG, ChenYQ: Platelets and cancer metastasis: more than an epiphenomenon. Seminars Thromb Hemost 18: 390–413, 1992

    Google Scholar 

  15. CrissmanJD, HatfieldJ, SchaldenbrandM, SloaneBF, HonnKV: Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab Invest 53: 470–478, 1985

    PubMed  Google Scholar 

  16. CrissmanJD, HatfieldJ, MenterDJ, SloaneBF, HonnKV: Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res 48: 4065–4072, 1988

    PubMed  Google Scholar 

  17. MenterDG, HatfieldJS, HarkinsC, SloaneBF, TaylorJD, CrissmanJD, HonnKV: Tumor cell-platelet interactionsin vitro and their relationship toin vivo arrest of hematogenously circulating tumor cells. Clin Exp Metastasis 5: 65–78, 1987

    PubMed  Google Scholar 

  18. LapisK, PakuS, LiottaLA: Endothelialization of embolized tumor cells during metastasis formation. Clin Exp Metastasis 6: 73–89, 1988

    PubMed  Google Scholar 

  19. HonnKV, MenterDG, SteinertBW, TaylorDG, OnodaJM, SloaneBF: Analysis of platelet, tumor cell and endothelial interactionsin vivo andin vitro. In: GaraciE, PaolettiR, SantoroMG (eds) Prostaglandins in Cancer Research. Springer-Verlag Berlin Heidelberg, 1987, pp 172–183

    Google Scholar 

  20. ChopraH, FligielSEG, HatfieldJS, NelsonKK, DiglioCA, HonnKV: Anin vivo study of the role of the tumor cell cytoskeleton in tumor cell-platelet-endothelial cell interactions. Cancer Res 50: 7686, 7696, 1990

    PubMed  Google Scholar 

  21. ChopraH, TimarJ, RongX, GrossiIM, HatfieldJS, FligielSEG, FinchCA, TaylorJD, HonnKV: Is there a role for the tumor cell integrin and cytoskeleton in tumor cell-platelet interaction? Clin Exp Metastasis 10: 125–137, 1992

    PubMed  Google Scholar 

  22. ChopraH, HatfieldJS, ChangYS, GrossiIM, FitzgeraldLA, O'GaraCY, MarnettLJ, DiglioCA, TaylorJD, HonnKV: Role of tumor cell cytoskeleton and membrane glycoprotein IRGpIIb/IIIa in platelet adhesion to tumor cell membrane and tumor cell-induced platelet aggregation. Cancer Res 48: 3787–3800, 1988

    PubMed  Google Scholar 

  23. TohgoA, TanakaNG, OgawaH: Platelet-aggregating activities of metastasizing tumor cells. IV. Effects of cell surface modification on thrombin generation, platelet aggregation and subsequent lung colonization. Invasion Metastasis 6: 58–68, 1986

    PubMed  Google Scholar 

  24. TanakaNG, TohgoA, OgawaH: Platelet-aggregating activities of metastasizing tumor cells. V.In situ role of platelets in hematogenous metastasis. Invasion Metastasis 6: 200–224, 1986

    Google Scholar 

  25. MahalingamM, UgenKE, KaoKJ, KleinPA: Functional role of platelets in experimental metastasis studied with cloned murine fibrosarcoma cell variants. Cancer Res 48: 1460–1464, 1988

    PubMed  Google Scholar 

  26. ZoucasE, JorgensenC, BengmarkS: Hemostasis following inoculation and during spreading of colon carcinoma in the rat. Cancer Res 46: 5662–5666, 1986

    PubMed  Google Scholar 

  27. MehtaP, LawsonD, WardMB, KimuraA, GeeA: Effect of human tumor cells on platelet aggregation: potential relevance to pattern of metastasis. Cancer Res 47: 3115–3117, 1987

    PubMed  Google Scholar 

  28. SugimotoY, Oh-haraT, WatanabeM, SaitoH, YamoriT, TsuruoT: Acquisition of metastatic ability in hybridomas between two low metastatic clones of murine colon adenocarcinoma 26 defective in either platelet-aggregating activity orin vivo growth potential. Cancer Res 47: 4396–4401, 1987

    PubMed  Google Scholar 

  29. TsuruoT, KawabataH, IidaH, YomoriT: Tumor induced patelet aggregation and growth promoting factors as determinants for successful tumor metastasis. Clin Exp Metastasis 4: 25–33, 1986

    PubMed  Google Scholar 

  30. HonnKV, MeyerJ: Thromboxane and prostacyclin: positive and negative modulators of tumor growth. Biochem Biophys Res Commun 102: 1122–1129, 1981

    PubMed  Google Scholar 

  31. ConstantiniV, CiampietriA, AllegrucciM, AgnelliG, NenciGG, FiorettiMC: Mechanisms of the antimetastatic activity of stable prostacyclin analogues: modulation of host immunocompetence. Adv Prostaglandin Thromboxane Leukotriene Res 21: 917–920, 1990

    Google Scholar 

  32. RadomskiM, JenkinsDC, HolmesL, MoncadaS: Human colorectal adenocarcinoma cells: differential nitric oxide synthesis determines their ability to aggregate platelets. Cancer Res 51: 6073–6078, 1991

    PubMed  Google Scholar 

  33. GrossiIM, DiglioCA, HonnKV: Control of tumor cell induced endothelial cell retraction by lipoxygenase metabolites, prostacyclin and prostacyclin analogs. In: HonnKV, MarnettLJ, NigamS, WaldenT (eds) Eicosanoids and Other Bioactive Lipids in Cancer and Radiation Injury. Kluwer Academic Publishers, Boston, 1991, pp 410–414

    Google Scholar 

  34. MenterDG, OnodaJM, TaylorJD, HonnKV: Effects of prostacyclin on tumor cell-induced platelet aggregation. Cancer Res 44: 450–456, 1984

    PubMed  Google Scholar 

  35. MenterDG, OnodaJM, MoilanenD, SloaneBF, TaylorJD, HonnKV: Inhibition by prostacyclin of the tumor cell-induced platelet release reaction and platelet aggregation. JNCI 78: 961–969, 1987

    PubMed  Google Scholar 

  36. HonnKV, MenterDG, OnodaJM, SteinertBW, DiglioCA, TaylorJD, SloaneBF: Tumor cell-platelet-endothelial cell interactions and prostaglandin metabolism. Adv Prostaglandin Thromboxane Leukotriene Res 17: 981–985, 1987

    Google Scholar 

  37. HonnKV: Inhibition of tumor cell metastasis by modulation of the vascular prostacyclin/thromboxane A2 system. Clin Exp Metastasis 1: 103–114, 1983

    PubMed  Google Scholar 

  38. HonnKV, BusseWD, SloaneBF: Prostacyclin and thromboxanes: implications for their role in tumor cell metastasis. Biochem Pharmacol 32: 1–11, 1983

    PubMed  Google Scholar 

  39. HonnKV, SloaneBF: Prostacyclin, thromboxanes, and hematogenous metastasis. Adv Prostaglandin Thromboxane Leukotriene Res 12: 313–318, 1983

    Google Scholar 

  40. HonnKV, OnodaJM, MenterDG, TaylorJD, SloaneBF: Prostacyclin in the control of tumor metastasis. In: CohenMM (ed) Biologic Protection with Prostaglandins. CRC Press, Inc., Boca Raton, FL, 1985, pp 92–110

    Google Scholar 

  41. Honn KV, Onoda JM, Menter DG, Cavanaugh PG, Taylor JD, Crissman JD, Ryan RE, Sloane BF: Possible strategies for antimetastatic therapy. In: Welch DR, Bhuyan BK, Liotta L (eds) Cancer Metastasis: Experimental and Clinical Strategies. Alan R. Liss, Inc., 1986, pp 217–246

  42. MenterDG, SteinertBW, TaylorJD, HonnKV: A newin vitro model for investigation of tumor cell-platelet-endothelial cell interactions and concomitant eicosanoid biosynthesis. Cancer Res 47: 2425–2432, 1987

    PubMed  Google Scholar 

  43. HonnKV, ChenYQ: Prostacyclin, hydroxy fatty acids and cancer metastasis. In: RubanyiGM, VaneJR (eds) Prostacyclin: New Perspectives in Basic Research and Novel Therapeutic Indications. Elsevier Science Publishers, Amsterdam, The Netherlands, 1992. In press.

    Google Scholar 

  44. MehtaP, OstrowskiN, BrigmonL: Decreased stabilization of prostacyclin activity in patients with bone tumors. Cancer Res 44: 3132–3134, 1984

    PubMed  Google Scholar 

  45. RouslahtiE, PierschbacherMD: New perspectives in cell adhesion: RGD and integrins. Science 238: 491–497, 1987

    PubMed  Google Scholar 

  46. GouldRJ, PolokoffMA, FriedmanPA, HuangTF, HoltJC, LookJJ, NiewiarowskiS: Disintegrins: a family of ibtegrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med 195: 168–171, 1990

    PubMed  Google Scholar 

  47. HynesRO: Integrins: a family of cell surface receptors. Cell 48: 549–554, 1987

    PubMed  Google Scholar 

  48. HumphriesMJ, OldenK, YamadaKM: A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science 233: 467–470, 1986

    PubMed  Google Scholar 

  49. HumphriesMJ, YamadaKM, OldenK: Investigation of the biological effects of the anti-cell adhesion synthetic peptides that inhibit experimental metastasis of B16-F10 murine melanoma cells. J Clin Invest 81: 782–790, 1988

    PubMed  Google Scholar 

  50. GehlsonKR, ArgravesWS, PierschbacherMD, RuoslahtiE: Inhibition ofin vitro tumor invasion by Arg-Gly-Asp containing peptides. J Cell Biol 106: 925–930, 1988

    PubMed  Google Scholar 

  51. KnudsenKA, TuszynskiGP, HungTF, NiewiarowskiS: Trigramin, an RGD-containing peptide from snake venom, inhibits cell-substratum adhesion of human melanoma cells. Exp Cell Res 179: 42–49, 1988

    PubMed  Google Scholar 

  52. UgenKE, MahalingamM, KleinPA, KaoKJ: Inhibition of tumor cell-induced platelet aggregation and experimental tumor metastasis by the synthetic Gly-Arg-Gly-Asp-Ser Peptide. JNCI 80: 1461–1466, 1988

    PubMed  Google Scholar 

  53. SaikiI, MurataJ, IidaJ, SakuraiT, NishiN, MatsunoK, AzumaI: Antimetastatic effects of synthetic polypeptides containing repeated structures of the cell adhesive Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR) sequences. Br J Cancer 60: 722–728, 1989

    PubMed  Google Scholar 

  54. SoszkaT, KnudsenKA, BevigliaL, RossiC, PoggiA, NiewiarowskiS: Inhibition of murine melanoma cell-matrix adhesion and experimental metastasis by albolarin, an RGD-containing peptide isolated from the venom of Trimeresurus albolaris. Exp Cell Res 196: 6–12, 1991

    PubMed  Google Scholar 

  55. SavageB, MarzecUM, ChaoBH, HarkerLA, MaraganoreJM, RuggeriZM: Binding of the snake venom-derived proteins applagin and echistatin to the arginine-glycine-aspartic acid recognition site(s) on platelet glycoprotein IIb-IIIa complex inhibits receptor function. J Biol Chem 265: 11766–11772, 1990

    PubMed  Google Scholar 

  56. FressinaudE, GirmaJP, SadlerJE, BaumgartnerHR, MeyerD: Synthetic RGDS-containing peptides of von Willebrand factor inhibit platelet adhesion to collagen. Thromb Haemost 64: 589–593, 1990

    PubMed  Google Scholar 

  57. ParmertierS, KaplanC, CatimelB, McGregorJL: New families of adhesion molecules play a vital role in platelet functions. Immunol Today 11: 225–227, 1990

    PubMed  Google Scholar 

  58. ClezardinP, SerreCM, TrzeciakMC, DrouinJ, DelmasPD: Thrombospondin binds to the surface of human osteosarcoma cells and mediates platelet-osteosarcoma cell interaction. Cancer Res 51: 2621–2627, 1991

    PubMed  Google Scholar 

  59. YabkowitzR, DixitVM: Human carcinoma cells express receptors for distinct domains of thrombospondin. Cancer Res 51: 1645–1650, 1991

    PubMed  Google Scholar 

  60. TuszynskiGP, GasicGB, RothmanVL, KnudsenKA, GasicGJ: Thrombospondin, a potentiator of tumor cell metastasis. Cancer Res 47: 4130–4133, 1987

    PubMed  Google Scholar 

  61. TuszynskiGP, RothmanVL, DeutchAH, HamiltonBK, EyalJ: Biological activities of peptides and peptide analogues derived from common sequences present in thrombospondin, properdin, and malarial proteins. J Cell Biol 116: 209–217, 1992

    PubMed  Google Scholar 

  62. WatanabeM, OkochiE, SugimotoY, TsuruoT: Identification of a platelet-aggregating factor of murine colon adenocarcinom 26: Mr 44,000 membrane protein as determined by monoclonal antibodies. Cancer Res 48: 6411–6416, 1988

    PubMed  Google Scholar 

  63. WatanabeM, SugimotoY, TsuruoT: Expression of a Mr 41,000 glycoprotein associated with thrombin-independent platelet aggregation in high metastatic variants of murine B16 melanoma. Cancer Res 50: 6657–6662, 1990

    PubMed  Google Scholar 

  64. SugimotoY, WatanabeM, Oh-haraT, SatoS, IsoeT, TsuruoT: Suppression of experimental lung colonization of a metastatic variant of murine colon adenocarcinoma 26 by a monoclonal antibody 8F11 inhibiting tumor cell-induced platelet aggregation. Cancer Res 51: 921–925, 1991

    PubMed  Google Scholar 

  65. Kijima-SudaI, MiyamotoY, ToyoshimaS, ItohM, OsawaT: Inhibition of experimental pulmonary metastasis of mouse colon adenocarcinoma 26 sublines by a sialic acid: nucleoside conjugate having sialyltransferase inhibiting activity. Cancer Res 46: 858–862, 1986

    PubMed  Google Scholar 

  66. Kijima-SudaI, MiyazawaT, ItohM, ToyoshimaS, OsawaT: Possible mechanism of inhibition of experimental pulmonary metastasis of mouse colon adenocarcinoma 26 sublines by a sialic acid: nucleoside conjugate. Cancer Res 48: 3728–3732, 1988

    PubMed  Google Scholar 

  67. HarveyBE, TothCA, WagnerHE, SteeleGD, ThomasP: Sialyltransferase activity and hepatic tumor growth in a nude mouse model of colorectal cancer metastasis. Cancer Res 52: 1775–1779, 1992

    PubMed  Google Scholar 

  68. EstradaJ, NicolsonGL: Tumor cell-platelet aggregation does not correlate with metastatic potential of rat 13762NF mammary adenocarcinoma tumor cell clones. Int J Cancer 34: 101–105, 1984

    PubMed  Google Scholar 

  69. KimuraAK, MehtaP, XiangJH, LawsonD, DuggerD, KaoKJ, Lee-AmbroseL: The lack of correlation between experimental metastatic potential and platelet aggregating activity of B16 malanoma clones viewed in relation to tumor cell heterogeneity. Clin Expl Metastasis 5: 125–133, 1987

    Google Scholar 

  70. HonnKV, GrossiIM, SteinertBW, ChopraH, OnodaJ, NelsonKK, TaylorJD: Lipoxygenase regulation of membrane expression of tumor cell glycoproteins and subsequent metastasis. Adv Prostaglandin Thromboxane Leukotriene Res 19: 439–443, 1989

    Google Scholar 

  71. MenterDG, HarkinsC, OnodaJM, RiordenW, SloaneBF, TaylorJD, HonnKV: Inhibition of tumor cell induced platelet aggregation by prostacyclin and carbacyclin: an ultrastructural study. Invasion Metastasis 7: 109–128, 1987

    PubMed  Google Scholar 

  72. HonnKV, TangDG, ChenYQ: Adhesion molecules and site-specific metastasis. In: SerneriGGN, GenshiGF, AbbateR, PriscoD (eds) Thrombosis: An Update. Scientific Press, Florence, P 269–303, 1992

    Google Scholar 

  73. ZimmermanGA, McIntyreTM, MehraM, PrescottSM: Endothelial cell-associated platelet-activating factor: a novel mechanism for signaling intercellular adhesion. J Cell Biol 110: 529–540, 1990

    PubMed  Google Scholar 

  74. Bar-shavitR, SabbahV, LampugnaniMG, MarchisioPC, FentonJWII, VlodavskyI, DejanaE: An arg-gly-asp sequence within thrombin promotes endothelial cell adhesion. J Cell Biol 112: 335–344, 1991

    PubMed  Google Scholar 

  75. DennisJW, LaferleS: Importance of cell surface carbohydrates in tumor cell metastasis. In: SchirmacherV, Schwartz-AlbiezR (eds) Cancer Metastasis. Springer-Verlag, Berlin, Heidelberg, 1989, pp 86–91

    Google Scholar 

  76. HakomoriS: New directions in cancer metastasis therapy based on aberrant expression of glycosphingolipids: anti-adhesion and orthosignaling therapy. Cancer Cells 3: 461–470, 1991

    PubMed  Google Scholar 

  77. EggensI, FendersonB, ToyokuniT, DeanB, StroudM, HakomoriS: Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantion embryos and in embryonal carcinoma cells. J Biol Chem 264: 9476–9484, 1989

    PubMed  Google Scholar 

  78. GasicGJ, GasicTB, StewartCC: Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci USA 61: 45–52, 1968

    Google Scholar 

  79. PearlsteinE, SalkPL, YogeeswarenG, KarpatkinS: Correlation between spontaneous metastatic potential, platelet-aggregating activity of cell surface extracts, and cell surface sialylation in 10 metastatic variant derivatives of rat sarcoma cell line. Proc Natl Acad Sci USA 77: 4336–4339, 1980

    PubMed  Google Scholar 

  80. HynesRO, LanderAD: Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68: 303–322, 1992

    PubMed  Google Scholar 

  81. IngberD: Integrins as mechanochemical transducers. Curr Opinion Cell Biol 3: 841–848, 1991

    PubMed  Google Scholar 

  82. GingellD, OwensN: How do cells sense and respond to adhesive contacts? Diffusion-trapping of laterally mobile membrane proteins at maturing adhesions may initiate signals leading to local cytoskeletal assembly response and lamella formation. J Cell Sci 101: 255–266, 1992

    PubMed  Google Scholar 

  83. KornbergLJ, EarpHS, TurnerCE, ProckopC, JulianoRL: Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of β1 integrins. Proc Natl Acad Sci USA 88: 8392–8396, 1991

    PubMed  Google Scholar 

  84. SeftorREB, SeftorEA, GehlsenKR, Stetler-StevensonWG, BrownPD, RuoslahtiE, HendrixMJC: Role of the αvβ3 integrin in human melanoma cell invasion. Proc Natl Acad Sci USA 89: 1557–1561, 1992

    PubMed  Google Scholar 

  85. McEverRP: Selectins: novel receptors that mediate leukocyte adhesion during inflammation. Thromb Haemost 65: 223–228, 1991

    PubMed  Google Scholar 

  86. TiemeyerM, SwiedlerSJ, IshiharaM, MorelandM, SchweingruberH, HirtzerP, BradleyBK: Carbohydrate ligands for endothelial-leukocyte adhesion molecule 1. Proc Natl Acad Sci USA 88: 1138–1142, 1991

    PubMed  Google Scholar 

  87. HemlerME, CrouseC, TakadaY, SonnerbergA: Multiple very late antigen (VLA) heterodimers on platelets: evidence for distinct VLA-2, VLA-5 (fibronectin receptor), and VLA-6 structures. J Biol Chem 263: 7660–7665, 1988

    PubMed  Google Scholar 

  88. KunickiTJ, NugentDJ, StaatsSJ, OrchekowskiRP, WaynerEA, CarterWG: The human fibroblast class II extracellular matrix receptor mediates platelet adhesion to collagen and is identical to the platelet glycoprotein Ia-IIa complex. J Biol Chem 263: 4516–4519, 1988

    PubMed  Google Scholar 

  89. SonnerbergA, ModdermanPW, HogervorstF: Laminin receptor on platelets in the integrin VLA-6. Nature 336: 487–487, 1988

    PubMed  Google Scholar 

  90. PariseLV: The structure and function of platelet integrins. Curr Opinion Cell Biol 1: 947–952, 1989

    PubMed  Google Scholar 

  91. KiefferN, PhillipsDR: Platelet membrane glycoproteins: functions in cellular interactions. Annu Rev Cell Biol 6: 329–357, 1990

    PubMed  Google Scholar 

  92. LamSC-T, PlowEF, D'SouzaSE, ChereshDA, FrelingerALIII, GinsbergMH: Isolation and characterization of a platelet membrane protein related to the vitronectin receptor. J Biol Chem 264: 3742–3749, 1988

    Google Scholar 

  93. NewmanPJ, BerndtMC, GorskiJ, WhiteCC, LymanS, PaddockC, MullerWA: PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene super family. Science 247: 1219–1222, 1990

    PubMed  Google Scholar 

  94. MetzelaarM, KortewergJ, SixmaJJ, NieuwenhuisHK: Biochemical characterization of PECAM-1 (CD31 antigen) on human platelets. Thromb Haemost 66: 700–707, 1991

    PubMed  Google Scholar 

  95. CeliA, FurieB, FurieBC: PADGEM: An adhesion receptor for leukocytes on stimulated platelets and endothelial cells. Proc Soc Exp Biol Med 198: 703–709, 1991

    PubMed  Google Scholar 

  96. PolleyMJ, PhillipsML, WaynerE, NudelmanE, SinghalAK, HakomoriS, PaulsonJC: CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM01) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc Natl Acad Sci USA 88: 6224–6228, 1991

    PubMed  Google Scholar 

  97. HandaK, NudelmanED, StroudMR, ShiozawaT, HakomoriS: Selectin GMP-140 (CD62, PADGEM) binds to sialosyl-Lea and sialosyl-Lex and surface glycans modulate this binding. Biochem Biophys Res Commun 181: 1223–1230, 1991

    PubMed  Google Scholar 

  98. TandonN, KraliscV, JamiesonGA: Identification of glycoprotein IV (CD36) as a primary receptor for platelet-collagen adhesion. J Biol Chem 264: 7576–7583, 1989

    PubMed  Google Scholar 

  99. PhillipsML, NudelmanE, GaetaFCA, PerezM, SinghalAK, HakomoriS, PaulsonJC: ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 250: 1130–1132, 1990

    PubMed  Google Scholar 

  100. WalzG, AruffoA, KolanusW, BevilacquaM, SeedB: Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science 250: 1132–1135, 1990

    PubMed  Google Scholar 

  101. FrelingerAL, LamSC-TIII, PlowEF, SmithMA, LoftusJC, GinsbergMH: Occupancy of an adhesive glycoprotein receptor modulates expression of an antigenic site involved in cell adhesion. J Biol Chem 263: 12397–12402, 1988

    PubMed  Google Scholar 

  102. O'TooleTE, LoftusJC, DuXP, GlassAA, RuggeriZM, ShattilSHJ, PlowEF, GinsbergMH: Affinity modulation of the αIIbβ3 integrin (platelet GPIIb-IIIa) is an intrinsic property of the receptor. Cell Regulation 1: 883–893, 1990

    PubMed  Google Scholar 

  103. KounsWC, JenningsLK: Activation-independent exposure of the GPIIb-IIIa fibrinogen receptor. Thromb Res 63: 343–354, 1991

    PubMed  Google Scholar 

  104. DuXP, PlowEF, FrelingerALIII, O'TooleTE, LoftusJC, GinsbergMH: Ligands ‘activate’ integrin αIIbβ3 (platelet GPIIb-IIIa). Cell 65: 409–416, 1991

    PubMed  Google Scholar 

  105. CardinaliM, UchinoR, ChungSII: Interaction of fibrinogen with murine melanoma cells: covalent association with cell membranes and protection against recognition by lymphokine-activated killer cells. Cancer Res 50: 5010–8016, 1990

    Google Scholar 

  106. GawazMP, LoftusJC, BajtML, FrojmovicMM, PlowEF, GinsbergMH: Ligand bridging mediates integrin αIIbβ3 (platelet GPIIB-IIIA) dependent homotypic and heterotypic cell-cell interactions. J Clin Invest 88: 1128–1134, 1991

    PubMed  Google Scholar 

  107. BastidaE, OrdinasA: Platelet contribution to the formation of metastatic foci: the role of cancer cell-induced platelet activation. Heamost 18: 29–36, 1988

    Google Scholar 

  108. FalangaA, GordonSG: Isolation and characterization of cancer procoagulant: a cysteine proteinase from malignant tissue. Biochemistry 24: 5558–5567, 1985

    PubMed  Google Scholar 

  109. FascoMJ, EaganGE, WilsonAC, GierthyJF, LincolnDL: Loss of metastatic and primary tumor factor X activator capabilities by Lewis lung carcinoma cell cultures in vitamin K-dependent protein deficient serum. Cancer Res 48: 6504–6510, 1988

    PubMed  Google Scholar 

  110. SakaiT, KiesielW: Binding of human factor X and Xa to HepG2 and J82 human tumor cell lines. J Biol Chem 265: 9105–9115, 1990

    PubMed  Google Scholar 

  111. CavanaughPG, SloaneBF, BajkowskiAS, TaylorJD, HonnKV: Purification and characterization of platelet aggregating activity from tumor cells: copurification with procoagulant activity. Thromb Res 37: 309–326, 1985

    PubMed  Google Scholar 

  112. ChelladuraiM, HonnKV, WalzDA: HLA-DR is a procoagulant. Biochem Biophys Res Commun 178: 467–473, 1991

    PubMed  Google Scholar 

  113. Bar-ShavitR, BenezraM, EldorA, Hy-AmE, FentonJWII, WilnerGD, VlodavskyI: Thrombin immobilized to extracellular matrix is a potent mitogen for vascular smooth muscle cells: nonenzymatic mode of action. Cell Regulation 1: 453–463, 1990

    PubMed  Google Scholar 

  114. WojtukiewiczMZ, CiarelliJJ, WalzDA, HonnKV: Thrombin enhances expression of an integrin receptor and increase adhesion of tumor cells. Proc Am Assoc Cancer Res 31: 80 (Abstr), 1990

    Google Scholar 

  115. NierodzikML, PlotkinA, KajumoF, KarpatkinS: Thrombin stimulates tumor platelet adhesionin vitro and metastasisin vivo. J Clin Invest 87: 229–236, 1991

    PubMed  Google Scholar 

  116. EsumiN, FanD, FidlerIJ: Inhibition of murine melanoma experimental metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor. Cancer Res 51: 4549–4556, 1991

    PubMed  Google Scholar 

  117. FoxJEB, BoylesJK: The membrane skeleton: a distinct structure that regulates the function of cells. Bioessays 8: 14–18, 1988

    PubMed  Google Scholar 

  118. ManningDR, BrassLF: The role of GTP-binding proteins in platelet activation. Thromb Heamost 66: 393–399, 1991

    Google Scholar 

  119. GrignaniG, PacchiariniL, AlmasioP, PagliarinoM, GambaG, RizzoSC, AscariE: Characterization of the platelet-aggregating activity of cancer cells with different metastatic potential. Int J Cancer 38: 237–244, 1986

    PubMed  Google Scholar 

  120. LongenekerGL, BeyersBJ, BowenRJ, KingT: Human rhabdosarcoma cell-induced aggregation of blood platelets. Cancer Res 49: 16–19, 1989

    PubMed  Google Scholar 

  121. ScarlettJD, TurlowPJ, ConnellanJM, LouisCJ: Plasma-dependent and-independent mechanisms of platelet aggregation induced by human tumor cell lines. Thromb Res 46: 715–715, 1987

    PubMed  Google Scholar 

  122. JohnstonGI, CookRG, McEverRP: Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell 56: 1033–1044, 1989

    PubMed  Google Scholar 

  123. HoffSD, MatsushitaY, OtaDM, ClearyKR, YamoriT, HakomoriS, IrimuraT: Increased expression of sialyldimeric Lex antigen in liver metastases of human colorectal carcinoma. Cancer Res 49: 6883–6888, 1989

    PubMed  Google Scholar 

  124. HoffSD, IrimuraT, MatsushitaY, OtaDM, ClearyKR, HakomoriS: Metastatic potential of colon carcinoma: expression of ABO-Lewis-related antigens. Arch Surg 125: 206–209, 1990

    PubMed  Google Scholar 

  125. InufusaH, KojimaN, YasutomiM, HakomoriS: Human lung adenocarcinoma cell lines with different lung colonization potential (LCP), and a correlation between expression of sialosyl-dimeric Lex (defined by MAb FH60) and LCP. Clin Expl Metastasis 9: 245–257, 1991

    Google Scholar 

  126. HandaK, IgarashiY, NisarM, HakomoriS: Downregulation of GMP-140 (CD62 or PADGEM) expression of platelets by N,N-dimethyl and N,N,N-trimethyl derivatives of sphingosine. Biochem 30: 11682–11686, 1991

    Google Scholar 

  127. KojimaN, HandaK, NewmanW, HakomoriS: Inhibition of selectin-dependent tumor cell adhesion to endothelial cells and platelets by blocking O-glycosylation of these cells. Biochem Biophys Res Commun 182: 1288–1295, 1992

    PubMed  Google Scholar 

  128. StoneJP, FurieBC, FurieB, WagnerDD: P-selectin mediates adhesion of small cell lung cancer cells to platelets. J Cell Biochem 16F (suppl): 171, 1992

    Google Scholar 

  129. AruffoA, DietschMT, WanH, HellstromKE, HellstromI: Granule membrane protein 140 (GMP140) binds to carcinomas and carcinoma-derived cell lines. Proc Natl Acad Sci USA 89: 2292–2296, 1992

    PubMed  Google Scholar 

  130. GrossiIM, FitzgeraldLA, KendallA, TaylorJD, SloaneBF, HonnKV: Inhibition of human tumor cell induced platelet aggregation by antibodies to platelet glycoproteins Ib and IIb/IIIa. Proc Soc Exp Biol Med 186: 378–383, 1987

    PubMed  Google Scholar 

  131. BastidaE, AlmiralL, OrdinasA: Tumor cell-induced platelet aggregation is a glycoprotein-dependent and lipoxygenase-associated process. Int J Cancer 39: 760–763, 1987

    PubMed  Google Scholar 

  132. KitagawaH, YamamotoN, YamamotoK, TanoueK, KosakiG, YamazakiH: Involvement of platelet membrane glycoproteins Ib and glycoprotein IIb/IIIa complex in thrombin-dependent and independent platelet aggregations induced by tumor cells. Cancer Res 49: 537–541, 1989

    PubMed  Google Scholar 

  133. KarpatkinS, PearlsteinE, AmbrogioC, CollerBS: Role of adhesive proteins in platelet tumor interactionin vitro and metastasisin vivo. J Clin Invest 81: 1012–1019, 1988

    PubMed  Google Scholar 

  134. GrossiIM, HatfieldJS, FitzgeraldLA, NewcombeM, TaylorJD, HonnKV: Role of tumor cell glycoproteins immunologically related to glycoproteins Ib and IIb/IIIa in tumor cell-platelet and tumor cell-matrix interactions. FASEB J 2: 2385–2395, 1988

    PubMed  Google Scholar 

  135. HonnKV, GrossiIM, FitzgeraldLA, UmbargerLA, DiglioCA, TaylorJD: Lipoxygenase products regulate IRGpIIb/IIIa receptor mediated adhesion of tumor cells to endothelial cells, subendothelial matrix and fribronectin. Proc Soc Exp Biol Med 189: 130–135, 1988

    PubMed  Google Scholar 

  136. KnudsenKA, SmithL, KarczewskiJ, TuszynskiJP: Role of IIb-IIIa-like glycoproteins in cell substratum adhesion of human melanoma cells. J Cell Physiol 136: 471–478, 1988

    PubMed  Google Scholar 

  137. McGregorBC, McGregorJL, WeissLM, WoodGS, HuCH, BoukercheH, WarnkeRA: Presence of cytoadhesins (IIb-IIIa-like glycoproteins) on human metastatic melanomas but not on benign melanocytes. Am J Clin Pathol 92: 495–499, 1989

    PubMed  Google Scholar 

  138. BoukercheH, Berthier-VergnesO, TaboneE, DoreJF, LeungLLK, McGregorJL: Platelet-melanoma cell interaction is mediated by the glycoprotein IIb-IIIa complex. Blood 74: 658–663, 1989

    PubMed  Google Scholar 

  139. GrossiIM, FitzgeraldLA, UmbargerLA, NelsonKK, DiglioCA, TaylorJD, HonnKV: Bidirectional control of membrane expression and/or activation of the tumor cell IRGpIIb/IIIa receptor and tumor cell adhesion by lipoxygenase products of arachidonic acid and lineoleic acid. Cancer Res 49: 1029–1037, 1989

    PubMed  Google Scholar 

  140. ChopraH, TimarJ, ChenYQ, RongX, GrossiIM, FitzgeraldLA, TaylorJD, HonnKV: The lipoxygenase metabolite 12(S)-HETE induces a cytoskeleton-dependent increase in surface expression of integrin αIIbβ3 on melanoma cells. Int J Cancer 49: 774–786, 1991

    PubMed  Google Scholar 

  141. Timar J, Chopra H, Grossi IM, Tayulor JD, Honn KV: The lipoxygenase metabolite of arachidonic acid, 12(S)-HETE induces cytoskeleton dependent upregulation of integrin αIIbβ3 in melanoma cells. In: Honn KV, Marnett LJ, Nigam S, Walden T (eds) Eicosanoids and Other Bioactive Lipids in Cancer and Radiation Injury. Kluwer Academic Publisher 1991, pp 332–345

  142. vanWilligenG, AkkermanJ-WN: Protein kinase C and cyclic AMP regulate reversible exposure of binding sites for fibrinogen on the glycoprotein IIB-IIIA complex on human platelets. Biochem J 273: 115–120, 1991

    PubMed  Google Scholar 

  143. ChangYS, ChenYQ, FitzgeraldLA, HonnKV: Analysis of integrin mRNA in human and rodent tumor cells. Biochem Biophys Res Commun 176: 108–113, 1991

    PubMed  Google Scholar 

  144. HonnKV, ChenYQ, TimarJ, OnodaJM, HatfieldJS, FligielSEG, SteinertBW, DiglioCA, GrossiIM, NelsonKK, TaylorJD: αIIbβ3 integrin expression and function in subpopulations of murine tumors. Exp Cell Res 201: 23–32, 1992

    PubMed  Google Scholar 

  145. ChangYS, ChenYQ, TimarJ, GrossiIM, FitzgeraldLA, DiglioCA, HonnKV: Increased expression of αIIbβ3 integrin in subpopulations of murine melanoma cells with high lung-colonizing ability. Int J Cancer 51: 445–451, 1992

    PubMed  Google Scholar 

  146. Honn KV, Grossi IM, Diglio CA, Taylor JD: Role of 12-lipoxygenase metabolites in integrin glycoprotein receptors in metastasis. In: Etievant C, Cros J, Rustum YM (eds) New Concepts in Cancer: Metastasis, Oncogenes, and Growth Factors. The MacMillan Press Ltd., 1990, pp 42–62

  147. OnodaJM, NelsonKK, GrossiIM, UmbargerLA, TaylorJD, HonnKV: Separation of high and low metastatic subpopulations from solid tumors by centrifugal elutriation. Proc Soc Exp Biol Med 187: 250–255, 1988

    PubMed  Google Scholar 

  148. TurnerWA, SzlagDC, TaylorJD: Platelet fibronectin release induced by Walker 256 rat carcinoma tumor cells. Clin Exp Metastasis 3: 209–220, 1985

    PubMed  Google Scholar 

  149. GrignaniG, PacchiariniL, AlmasioP, PagliarionM, GambaG: Activation of platelet prostaglandin biosynthesis pathway during neoplastic cell-induced platelet aggregation. Thromb Res 34: 147–157, 1984

    PubMed  Google Scholar 

  150. PacchiariniL, ZucchellaM, MilanesiG, TacconiF, BonomiE, CanevariA, GrignaniG: Thromboxane production by platelets during tumor cell-induced platelet aggregation. Invasion Metastasis 11: 102–109, 1991

    PubMed  Google Scholar 

  151. HonnKV, SteinertBW, MoinK, OnodaJM, TaylorJD, SloaneBF: The role of platelet cyclooxygenase and lipoxygenase pathways in tumor cell induced platelet aggregation. Biochem Biophys Res Commun 145: 384–389, 1987

    PubMed  Google Scholar 

  152. MarnettLJ, LeithauserMT, RichardsKM, BlairI, HonnKV, YamamotoS, YoshimotoT: Arachidonic acid metabolism of cytosolic fractions of Lewis lung carcinoma cells. Adv Prostaglandin Thromboxane Leukotriene Res 21: 895–900, 1990

    Google Scholar 

  153. LiuB, TimarJ, HowlettJ, DiglioCA, HonnKV: Lipoxygenase metabolites of arachidonic and linoleic acids modulate the adhesion of tumor cells to endothelium via regulation of protein kinase C. Cell Regulation 2: 1045–1055, 1991

    PubMed  Google Scholar 

  154. TangDG, DiglioCA, HonnKV: 12(S)-HETE-induced microvascular endothelial cell retraction is mediated by cytoskeletal rearrangement dependent on PKC activation. In: NigamS, HonnKV, MarnettLJ, WaldenT (eds) Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury. Kluwer Academic Publishers, Boston, 1992, pp 219–229

    Google Scholar 

  155. ChenYQ, HonnKV: Eicosanoid regulation of tumor cell-platelet and -endothelium interaction during arrest and extravasation. In: NigamS, HonnKV, MarnettLJ, WaldenT (eds) Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury. Kluwer Academic Publishers, Boston, 1992, pp 613–617

    Google Scholar 

  156. TaylorJD, TimarJ, TangD, BazazR, ChopraH, KimlerV, HonnKV: 12-(S)-HETE induces cytoskeleton phosphorylations and rearrangement in melanoma cells. In: NigamS, HonnKV, MarnettLJ, WaldenT (eds) Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury. Kluwer Academic Publishers, Boston, 1992, pp 635–638

    Google Scholar 

  157. TimarJ, LiuB, BazazR, TaylorJD, HonnKV: Fatty acid modulation of cancer cell spreading and cytoskeleton rearrangement. In: NigamS, HonnKV, MarnettLJ, WaldenT (eds) Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury. Kluwer Academic Publishers, Boston, 1992, pp 639–643

    Google Scholar 

  158. KatagiriY, HayashiY, BabaI, SuzukiH, TanoueK, YamazakiH: Characterization of platelet aggregation induced by the human melanoma cell line HMV-1: roles of heparin, plasma adhesive proteins, and tumor cell membrane proteins. Cancer Res 51: 1286–1293, 1991

    PubMed  Google Scholar 

  159. SpearmanMA, BallonBC, GerrardJM, GreenbergAH, WrightJA: The inhibition of platelet aggregation of metastatic H-ras-transformed 10T1/2 fibroblasts with castanospermine, an N-linked glycoprotein processing inhibitor. Cancer Lett 60: 185–191, 1991

    PubMed  Google Scholar 

  160. ButcherEC: Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 61: 1033–1036, 1991

    Google Scholar 

  161. SmithCW, AndersonDC: PMN adhesion and extravasation as a paradigm for tumor cell dissemination. Cancer Metastasis Rev 10: 61–78, 1991

    PubMed  Google Scholar 

  162. KojimaN, HakomoriS: Cell adhesion, spreading, and motility of GM3-expressing cells based on glycosphingolipid interactions. J Biol Chem 266: 20159–20162, 1991

    PubMed  Google Scholar 

  163. GengJG, BevilacquaMP, MooreKL, McIatyreTM, PrescottSM, KimJM, BlissGA, ZimmermanGA, McEverRP: Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 343: 757–760, 1990

    PubMed  Google Scholar 

  164. PatelKD, ZimmermanGA, PrescottSM, McEverRP, McIntyreTM: Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J Cell Biol 112: 749–759, 1991

    PubMed  Google Scholar 

  165. MajuriML, MattilaP, RenkonenR: Recombinant E-selectin-protein mediates tumor cell adhesion via sialyl-Lea and sialyl-Lex. Biochem Biophys Res Commun 182: 1376–1382, 1992

    PubMed  Google Scholar 

  166. RiceCE, BevilacquaMP: An inducible endothelial cell glycoprotein mediates melanoma adhesion. Science 246: 1303–1306, 1989

    PubMed  Google Scholar 

  167. BurrowsFJ, HaskardDO, HartIR, MarshallJF, SelkirkS, PooleS, ThorpePE: Influence of tumor derived interleukin 1 on melanoma-endothelial cell interactionsin vitro. Cancer Res 51: 4758–4775, 1991

    Google Scholar 

  168. SkolnikG, BaggeV, DahlstromA, AhlmanH: The importance of 5-HT for tumor cell lodgement in the liver. Int J Cancer 33: 519–523, 1984

    PubMed  Google Scholar 

  169. KaminskiM, AuerbachR: Tumor cells are protected from NK cell-mediated lysis by adhesion to endothelial cell. Int J Cancer 4: 847–849, 1988

    Google Scholar 

  170. HawrylowiczCM, HowellsGL, FeldmanM: Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. J Exp Med 174: 785–790, 1991

    PubMed  Google Scholar 

  171. TsuruoT, WatanabeM, Oh-haraT: Stimulation of the growth of metastatic clones of mouse colon adenocarcinoma 26in vitro by platelet-derived growth factor. Jpn J Cancer Res 80: 136–140, 1989

    PubMed  Google Scholar 

  172. AkedoH, ShinkaiK, MukaiM, KomatsuK: Potentiation and inhibition of tumor cell invasion by host cells and mediators. Invasion Metastasis 9: 134–138, 1989

    PubMed  Google Scholar 

  173. OrrFW, MillerBW, SinghG: Chemotactic activity of bone and platelet-derived TGF-beta for bone-metastasizing rat Walker 256 carcinoma cells. Invasion Metastasis 10: 241–252, 1990

    PubMed  Google Scholar 

  174. WeissL, OrrWF, HonnKV: Interactions between cancer cells and the microvasculature: a rate-regulator for metastasis. Clin Expl Metastasis 7: 127–167, 1989

    Google Scholar 

  175. HonnKV, GrossiIM, DiglioCA, WojtakiewiczM, TaylorJD: Enhanced tumor cell adhesion to the subendothelial matrix resulting from 12(S)-HETE-induced endothelial cell retraction. FASEB J 3: 2285–2293, 1989

    PubMed  Google Scholar 

  176. Haimovitz-FriedmanA, FalconeDJ, EldorA, SchirrmacherV, VlodavskyI, FuksZ. Activation of platelet heparitinase by tumor cell-derived factors. Blood 78: 789–796, 1991

    PubMed  Google Scholar 

  177. MenterDG, SloaneBF, SteinertBW, OnodaJ, CraigC, HarkinsC, TaylorJD, HonnKV: Platelet enhancement of tumor cell adhesion to subendothelial matrix: role of platelet cytoskeleton and plasma membrane. JNCI 79: 1077–1090, 1987

    PubMed  Google Scholar 

  178. MenterDG, SteinertBW, SloaneBF, GundlachN, O'GaraCY, MarnettLJ, DiglioC, WalzD, TaylorJD, HonnKV: Role of platelet membrane in enhancement of tumor cell adhesion to endothelial cell extracellular matrix. Cancer Res 47: 6751–6762, 1987

    PubMed  Google Scholar 

  179. Timar J, Chen YQ, Liu B, Bazaz R, Taylor JD, Honn KV: The lypoxygenase metabolite 12(S)-HETE promotes αIIbβ3 integrin mediated tumor cell spreading on fibronectin. Int J Cancer 1992, In press

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honn, K.V., Tang, D.G. & Crissman, J.D. Platelets and cancer metastasis: A causal relationship?. Cancer Metast Rev 11, 325–351 (1992). https://doi.org/10.1007/BF01307186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01307186

Key words

Navigation