Skip to main content
Log in

Composition and classification of human atherosclerotic lesions

  • Review
  • Published:
Virchows Archiv A Aims and scope Submit manuscript

Summary

Human atherosclerotic disease can be resolved into eight types of lesion, each characterized by its composition and structure and the absence or degree of intimal injury. The eight types have been arranged in the sequence in which they may progress in complexity from the initial change in childhood or youth to the clinical endpoints in older persons. While lesions at first increase primarily by intra- and extracellular accumulation of lipid, this in itself rarely accounts for symptomatic obstruction. Lipidic lesions become symptomatic primarily by means of successively superimposed deposits of thrombotic material. Non-homogeneity of hemodynamic forces within the length of an artery account for local differences in intima thickness (adaptive intimal thickening) and, in persons with risk factors, differences in susceptibility to lesion formation. According to the degree to which they can accumulate or retain lipid and bring about secondary mechanisms, specific locations of the arterial tree have been designated asatherosclerosisresistant, atherosclerosis-prone and progression-prone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrose JA (1989a) Coronary arteriographic analysis and angiographic morphology. J Am Coll Cardiol 13:1492–1494

    Google Scholar 

  • Ambrose JA (1989b) Coronary morphology in unstable angina (letter). Am J Cardiol 64:256

    Google Scholar 

  • Ambrose JA, Winters SL, Arora RR, Eng A, Riccio A, Gorlin R, Fuster V (1986) Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol 7:472–478

    Google Scholar 

  • Aschoff L (1924) Lectures on pathology. Hoeber, New York

    Google Scholar 

  • Aschoff L (1930) Die Arteriosklerose. Med Klinik [Suppl 1]:1–20

    Google Scholar 

  • Aschoff L (1933) Introduction. In: Cowdry EV (ed) Arteriosclerosis. A survey of the problem. Macmillan, New York, pp 1–18

    Google Scholar 

  • Backa D, Nerlich A, Höfling B (1991) Histologic predictors for restenoses in primary arteriosclerotic lesions. Arterioscler Thromb 11:1508 a

    Google Scholar 

  • Barbano EF, Newman GE, McCann RL, Hackel DB, Stack RS, Palmos LE, Mikat EM (1989) Correlation of clinical history with quantitative histology of lower extremity atheroma biopsies obtained with the Simpson atherectomy catheter. Atherosclerosis 78:183–196

    Google Scholar 

  • Barger AC, Beeuwkes R III, Lainey LL, Silverman KJ (1984) Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310:175–177

    Google Scholar 

  • Barnes RW (1991) Noninvasive diagnostic assessment of peripheral vascular disease. Circulation 83 [Suppl I]:I-20–I-27

    Google Scholar 

  • Beeuwkes R III, Barger AC, Silverman KJ, Lainey LL (1990) Cine micrographic studies of the vasa vasorum of human coronary arteries. In: Glagov S, Newman WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, Berlin Heidelberg New York, pp 425–432

    Google Scholar 

  • Björkerud S (1969) Reaction of the aortic wall of the rabbit after superficial, longitudinal, mechanical trauma. Virchows Arch [A] 347:197–210

    Google Scholar 

  • Björkerud S, Bondjers G (1973) Arterial repair and atherosclerosis after mechanical injury: tissue response after induction of a larger superficial transverse injury. Atherosclerosis 18:235–255

    Google Scholar 

  • Bremer JL (1924) On the variations of wall thickness in embryonic arteries. Anat Rec 27:1–14

    Google Scholar 

  • Brown G, Albers JJ, Fisher LD, et al (1990) Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 323:1289–1298

    Google Scholar 

  • Caro CG, Parker KH, Fish PJ, Lever MJ (1985) Blood flow near the arterial wall and arterial disease. Clin Hemor 5:849–871

    Google Scholar 

  • Cashin-Hemphill L, Mack MJ, Pogoda J, Sanmarco ME, Azen SP, Blankenhorn DH (1990) Beneficial effects of colestipolniacin on coronary atherosclerosis: a four year follow-up. JAMA 264:3013–3017

    Google Scholar 

  • Clarkson TB, Weingand KW, Kaplan JR, Adams MR (1987) Mechanisms of atherogenesis. Circulation 76 [Suppl I]:20–28

    Google Scholar 

  • Constantinides P (1966) Plaque fissuring in human coronary thrombosis. J Atheroscler Res 6:1–17

    Google Scholar 

  • Constantinides P (1990) Plaque hemorrhages, their genesis and their role in supra-plaque thrombosis and atherogenesis. In: Glagov S, Newman WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, Berlin Heidelberg New York, pp 394–411

    Google Scholar 

  • Cornhill JF, Herderick EE, Stary HC (1990) Topography of human aortic sudanophilic lesions. Monographs on atherosclerosis, vol 15. Karger, Basel, pp 13–19

    Google Scholar 

  • Cotran RS, Kumar V, Robbins SL (1989) Pathologic basis of disease, 4th edn. Saunders, Philadelphia, p 562

    Google Scholar 

  • Dartsch PC, Bauriedel G, Schinko I, Weiss HD, Höfling B, Betz E (1989) Cell constitution and characteristics of human atherosclerotic plaques selectively removed by percutaneous atherectomy. Atherosclerosis 80:149–157

    Google Scholar 

  • Davies MJ (1986) Color atlas of cardiovascular pathology, chapter 6. Ischemic heart disease. Harvey Miller, London

    Google Scholar 

  • Davies MJ, Thomas AC (1985) Plaque fissuring: the cause of acute myocardial infarction, sudden ischaemic death and crescendo angina. Br Heart J 53:363–373

    Google Scholar 

  • Dock W (1946) The predilection of atherosclerosis for the coronary arteries. JAMA 131:875–878

    Google Scholar 

  • Duff L, McMillan GC (1951) Pathology of atherosclerosis. Am J Med 11:92–108

    Google Scholar 

  • Duff GL, McMillan GC, Ritchie AC (1957) The morphology of early atherosclerotic lesions of the aorta demonstrated by the surface technique in rabbits fed cholesterol. Am J Pathol 33:845–873

    Google Scholar 

  • Eckmann A, Schmiedt W, Storket S, Kuhn FP (1990) Zur Diagnostik atherosklerotischer Läsionen der extrakraniellen arteria carotis mit Duplexsonographie und IA-DSA. Eine prospektive und pathologisch-anatomisch kontrollierte Studie. ROFO 153:48–55

    Google Scholar 

  • Edholm G (1912) Über die arteria coronaria cordis des Menschen. Anat Anz 42:124–128

    Google Scholar 

  • Editorial (1990) Lancet 335:139–140

    Google Scholar 

  • Ehrich W, Chapelle C de la, Cohn AE (1931) Anatomical ontogeny. B. Man. I. A study of the coronary arteries. Am J Anat 49:241–282

    Google Scholar 

  • Ellis S, Alderman EL, Cain K, Wright A, Bourassa M, Fisher L (1989) Morphology of left anterior descending coronary territory lesions as a predictor of anterior myocardial infarction: a CASS registry study. J Am Coll Cardiol 13:1481–1491

    Google Scholar 

  • Enos WF, Holmes RH, Beyer J (1953) Coronary disease among United States soldiers killed in action in Korea. Preliminary report. JAMA 152:1090–1093

    Google Scholar 

  • Faggiotto A, Ross R, Harker L (1984) Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 4:323–340

    Google Scholar 

  • Falk E (1991) Coronary thrombosis: pathogenesis and clinical manifestations. Am J Cardiol 68:28B-35B

    Google Scholar 

  • Fangman RJ, Hellwig CA (1947) Histology of coronary arteries in newborn infants (abstract). Am J Pathol 23:901–902

    Google Scholar 

  • Fuster V, Stein B, Ambrose JA, Badimon L, Badimon JJ, Chesebro JH (1990) Atherosclerotic plaque rupture and thrombosis. Evolving concepts. Circulation 82 [Suppl II]:II-47–II-59

    Google Scholar 

  • Fuster V, Badimon L, Badimon JJ, Ip JH, Chesebro JH (1991) The porcine model for the understanding of thrombogenesis and atherogenesis. Mayo Clin Proc 66:818–831

    Google Scholar 

  • Fuster V, Badimon L, Badimon JJ, Chesebro JH (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 326:242–250, 310–318

    Google Scholar 

  • Geer JC, Malcom GT (1965) Cholesterol ester fatty acid composition of human aorta fatty streaks and normal intima. Exp Mol Pathol 4:500–507

    Google Scholar 

  • Geer JC, McGill HC, Robertson WB, Strong JP (1968) Histologic characteristics of coronary artery fatty streaks. Lav Invest 18:565–570

    Google Scholar 

  • Gerrity RG (1981) The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol 103:181–190

    Google Scholar 

  • Glagov S, Zarins CB (1989) Is intimal hyperplasia an adaptive response or a pathologic process? Observations on the nature of nonatherosclerotic intimal thickening. J Vasc Surg 10:571–573

    Google Scholar 

  • Goes E, Janssens W, Maillet B, Freson M, Steyaert L, Osteaux M (1990) Tissue characterization of atheromatous plaques: correlation between ultrasound image and histological findings. J Clin Ultrasound 18:611–617

    Google Scholar 

  • Gore I, Tejada C (1957) The quantitative appraisal of atherosclerosis. Am J Pathol 33:875–885

    Google Scholar 

  • Gotto AM Jr (1985) Some reflections on arteriosclerosis: past, present, and future. Circulation 72:8–17

    Google Scholar 

  • Gross L, Epstein EZ, Kugel MA (1934) Histology of the coronary arteries and their branches in the human heart. Am J Pathol 10:253–273

    Google Scholar 

  • Guzman MA, McMahan CA, McGill HC Jr, Strong JP, Tejada C, Restrepo C, Eggen DA, Robertson WB, Solberg LA (1968) Selected methodologic aspects of the International Atherosclerosis Project. Lab Invest 18:479–497

    Google Scholar 

  • Haimovici H (1977) Atherogenesis. Recent biological concepts and clinical implications. Am J Surg 134:174–178

    Google Scholar 

  • Höfling B, Polnitz A von, Backa D, Meissner R, von Arnim T, Jauch G, Remberger K (1989) Angiographische und funktioneile Ergebnisse sowie histologische Befunde nach perkutaner Atherektomie bei Patienten mit arterieller Verschlusskrankheit. Z Kardiol 78:561–566

    Google Scholar 

  • Imai H, Connell CE, Lee KT, Kim DN, Thomas WA (1985) Differential counts by electron microscopy of cell types in normal intimal cell masses in swine abdominal aortas. Exp Mol Pathol 42:377–388

    Google Scholar 

  • Ip JJ, Fuster V, Badimon L, Badimon J, Taubman MB, Chesebro JH (1990) Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol 15:1667–1687

    Google Scholar 

  • Jaffe D, Hartroft WS, Manning M, Eleta G (1971) Coronary arteries in newborn children. Acta Paediatr Scand [Suppl] 219:1–28

    Google Scholar 

  • Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6:131–138

    Google Scholar 

  • Jores L (1921) Die Entwicklung der Lehre von der Arteriosklerose seit Virchow. Virchows Arch 235:262–272

    Google Scholar 

  • Jores L (1924) Arterien. In:Henke F, Lubarsch O (eds) Handbuch der speziellen pathologischen Anatomie und Histologie, vol 2. Herz und Gefässe. Springer, Berlin Heidelberg New York, pp 608–786

    Google Scholar 

  • Joris I, Zand T, Nunnari JJ, Krolikowski FJ, Majno G (1983) Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol 113:341–358

    Google Scholar 

  • Kane JP, Malloy MJ, Ports TA, Phillips NR, Diehl JC, Havel RJ (1990) Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA 264:3007–3012

    Google Scholar 

  • Katsuda S, Boyd HC, Fligner C, Ross R, Gown AM (1992) Human atherosclerosis. III. Immunocytochemical analysis of the cell composition of lesions of young adults. Am J Pathol 140:907–914

    Google Scholar 

  • Katz SS, Shipley GG, Small DM (1976) Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. J Clin Invest 58:200–211

    Google Scholar 

  • Kim DN, Lee KT, Schmee J, Thomas WA (1984) Quantification of intimal cell masses and atherosclerotic lesions in coronary arteries of control and hyperlipidemic swine. Atherosclerosis 52:115–122

    Google Scholar 

  • Kovanen PT (1990) Atheroma formation: defective control in the intimal round-trip of cholesterol. Eur Heart J 11 [Suppl E]:238–246

    Google Scholar 

  • Lewis JC, Taylor RG, Jerome WG (1985) Foam cell characteristics in coronary arteries and aortas of White Carneau pigeons with moderate hypercholesterolemia. Ann NY Acad Sci 454:91–100

    Google Scholar 

  • Long ER (1933) The development of our knowledge of arteriosclerosis. In: Cowdry EV (ed) Arteriosclerosis. A survey of the problem. McMillan, New York, pp 19–52

    Google Scholar 

  • Long ER (1967) Development of our knowledge of arteriosclerosis. In: Blumenthal HT (ed) Cowdry's arteriosclerosis. A survey of the problem. Thomas, Springfield, pp 5–20

    Google Scholar 

  • Mauer AM (1986) Risk factors in children and early atherosclerosis (letter). N Engl J Med 314:1579

    Google Scholar 

  • Mauer AM (1987) Atherosclerosis (letter). Pediatrics 79:651–653

    Google Scholar 

  • McGill HC (1974) The lesion. In: Schettler G, Weizel A (eds) Atherosclerosis III. Springer, Berlin Heidelberg New York, pp 27–38

    Google Scholar 

  • McGill HC, Strong JP, Holman RL, Werthessen NT (1960) Arterial lesions in the Kenya baboon. Circ Res 8:670–679

    Google Scholar 

  • McMillan GC (1965) The onset of plaque formation in arteriosclerosis. Acta Cardiol [Suppl XI]:43–62

    Google Scholar 

  • McMillan GC (1985) Nature and definitions of atherosclerosis. In: Lee KT (ed) Atherosclerosis. Ann NY Acad Sci 454:1–4

  • Minkowski WL (1947) The coronary arteries of infants. Am J Med Sci 214:623–629

    Google Scholar 

  • Mitchell JRA, Schwartz CJ (1965) Arterial disease. Davis, Philadelphia

    Google Scholar 

  • Møller L, Kristensen TS (1991) Plasma fibrinogen and ischemic heart disease risk factors. Arterioscler Thromb 11:344–350

    Google Scholar 

  • Moon HD (1957) Coronary arteries in fetuses, infants, and juveniles. Circulation 16:263–267

    Google Scholar 

  • Movat HZ, More RH, Haust MD (1958) The diffuse intimal thickening of the human aorta with aging. Am J Pathol 34:1023–1031

    Google Scholar 

  • Munro JM, Van der Walt JD, Munro CS, Chalmers JAC, Cox EL (1987) An immunohistochemical analysis of human aortic fatty streaks. Hum Pathol 18:375–380

    Google Scholar 

  • Myler RK, Shaw RE, Stertzer SH, Bashour TT, Ryan C, Hecht HS, Cumberland DC (1990) Unstable angina and coronary angioplasty. Circulation 82 [Suppl II]:II-88–II-95

    Google Scholar 

  • Neufeld HN, Wagenvoort CA, Edwards JE (1962) Coronary arteries in fetuses, infants, juveniles, and young adults. Lab Invest 11:837–844

    Google Scholar 

  • Ornish DM, Brown SE, Scherwitz LW, Billings JH, Armstrong WT, Ports TA, McLanahan SM, Kirkeeide RL, Brand RJ, Gould KL (1990) Can lifestyle changes reverse coronary heart disease? Lancet 336:129–133

    Google Scholar 

  • Pflieger H, Goerttler K (1970) Konstruktionsprinzipien der Aortenwand im Ursprungsbereich der interkostalen, intestinalen und renalen Aortenäste. Arch Kreislaufforsch 62:223–248

    Google Scholar 

  • Richardson M, Hatton MWC, Moore S (1988) Proteoglycan distribution in the intima and media of the aortas of young and aging rabbits: an ultrastructural study. Atherosclerosis 71:243–256

    Google Scholar 

  • Richardson PD, Davies MJ, Born GVR (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet II:941–944

    Google Scholar 

  • Robertson JH (1960) The significance of intimal thickening in the arteries of the newborn. Arch Dis Child 35:588–590

    Google Scholar 

  • Roessner A, Schmitz G, Sorg C (1987) What's new in the pathology of atherosclerosis? Pathol Res Pract 182:694–698

    Google Scholar 

  • Ross R (1986) The pathogenesis of atherosclerosis: an update. N Engl J Med 314:488–500

    Google Scholar 

  • Schmidtmann M (1925) Das Vorkommen der Arteriosklerose bei Jugendlichen und seine Bedeutung für die Ätiologie des Leidens. Virchows Arch 255:206–223

    Google Scholar 

  • Schornagel HE (1956) Intimal thickening in the coronary arteries in infants. Arch Pathol 62:427–432

    Google Scholar 

  • Schwenke DC, Carew TE (1988) Quantification in vivo of increased LDL content and rate of LDL degradation in normal rabbit aorta occurring at sites susceptible to early atherosclerotic lesions. Circ Res 62:699–710

    Google Scholar 

  • Schwenke DC, Carew TE (1989) Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis 9:895–907

    Google Scholar 

  • Simionescu N, Vasile E, Lupu F, Popescu G, Simionescu M (1986) Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol 123:109–125

    Google Scholar 

  • Small DM (1988) Progression and regression of atherosclerotic lesions. Arteriosclerosis 8:103–129

    Google Scholar 

  • Smith EB, Smith RH (1976) Early changes in aortic intima. In: Paoletti R, Gotto AM Jr (eds) Atherosclerosis reviews, vol 1. Raven Press, New York, pp 119–136

    Google Scholar 

  • Spring PM, Hoff HF (1989) LDL accumulation in the grossly normal human iliac bifurcation and common iliac arteries. Exp Mol Pathol 51:179–185

    Google Scholar 

  • Stary HC (1974) Proliferation of arterial cells in atherosclerosis. In: Wagner WD, Clarkson TB (eds) Arterial mesenchyme and arteriosclerosis. Adv Exp Med Biol 43:59–81

  • Stary HC (1976) Coronary artery fine structure in rhesus monkeys: the early atherosclerotic lesion and its progression. Primates Med 9:359–395

    Google Scholar 

  • Stary HC (1987a) Macrophages, macrophage foam cells, and eccentric intimal thickening in the coronary arteries of young children. Atherosclerosis 64:91–108

    Google Scholar 

  • Stary HC (1987b) Atheroma arises in eccentric intimal thickening from concurrent fatty streak lesions. Fed Proc 46:418

    Google Scholar 

  • Stary HC (1989) Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis 9 [Suppl I]:19–32

    Google Scholar 

  • Stary HC (1990) The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J 11 [Suppl E]:3–19

    Google Scholar 

  • Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull W, Rosenfeld ME, Richardson M, Schaffer SA, Schwartz CJ, Wagner WD, Wissler R (1992) A definition of the intima of human arteries and of its atherosclerosis-prone regions. Circulation 85:391–405

    Google Scholar 

  • Stehbens WE (1960) Focal intimal proliferations in the cerebral arteries. Am J Pathol 36:289–301

    Google Scholar 

  • Steinberg D, Witztum JL (1990) Lipoproteins and atherogenesis. Current concepts. JAMA 264:3047–3052

    Google Scholar 

  • Stemerman MB, Ross R (1973) Experimental arteriosclerosis: 1. Fibrous plaque formation in primates: an electron microscopic study. J Exp Med 136:769–789

    Google Scholar 

  • Still WJS, O'Neal RM (1962) Electron microscopic study of experimental atherosclerosis in the rat. Am J Pathol 40:21–35

    Google Scholar 

  • Strasser T (1980) Primary prevention: the role of the World Health Organization. In:Lauer RM, Shekelle RB (eds) Childhood prevention of atherosclerosis and hypertension. Raven Press, New York, pp 473–476

    Google Scholar 

  • Thoma R (1883) Über die Abhängigkeit der Bindegewebsneubildung in der Arterienintima von den mechanischen Bedingungen des Blutumlaufes. Erste Mitteilung. Virchows Arch 93:443–505

    Google Scholar 

  • Thoma R (1920) Über die Strömung des Blutes in der Gefässbahn und die Spannung der Gefässwand. I. Teil. Beitr Pathol Anat Allg Pathol 66:92–158

    Google Scholar 

  • Velican C, Velican D (1977) Studies on human coronary arteries I. Branch pads or cushions. Acta Anat 99:377–385

    Google Scholar 

  • Velican C, Velican D (1980) The precursors of coronary atherosclerotic plaques in subjects up to 40 years old. Atherosclerosis 37:33–46

    Google Scholar 

  • Wight TN, Ross R (1975) Proteoglycans in primate arteries. I. Ultrastructural localization and distribution in the intima. J Cell Biol 67:660–674

    Google Scholar 

  • Wilens SL (1951) The nature of diffuse intimal thickening of arteries. Am J Pathol 27:825–839

    Google Scholar 

  • Williams AE, Freeman MR, Chisholm RJ, Patt NL, Armstrong PW (1988) Angiographic morphology in unstable angina pectoris. Am J Cardiol 62:1024–1027

    Google Scholar 

  • Wolkoff K (1923) Über die histologische Struktur der Coronararterien des menschlichen Herzens. Virchows Arch 241:42–58

    Google Scholar 

  • Wolkoff K (1929) Über die Atherosklerose der Coronararterien des Herzens. Beitr Pathol Anat Allg Pathol 82:555–596

    Google Scholar 

  • World Health Organization (1958) Classification of atherosclerotic lesions; report of a study group. WHO Tech Rep Ser 143:1–20

    Google Scholar 

  • Wright HP (1968) Endothelial mitosis around aortic branches in normal guinea pigs. Nature 220:78–79

    Google Scholar 

  • Yarnell JWG, Baker IA, Sweetnam PM, Bainton D, O'Brien JR, Whitehead PJ, Elwood PC (1991) Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease. Circulation 83:836–844

    Google Scholar 

  • Yater WM, Traum AH, Brown WG, Fitzgerald RP, Geisler MA, Wilcox BB (1948) Coronary artery disease in men eighteen to thirty-nine years of age. Am Heart J 36:334–372, 481–526, 683–722

    Google Scholar 

  • Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53:502–514

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stary, H.C. Composition and classification of human atherosclerotic lesions. Vichows Archiv A Pathol Anat 421, 277–290 (1992). https://doi.org/10.1007/BF01660974

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01660974

Key words

Navigation