Skip to main content
Log in

Mechanisms of postoperative prolonged plasma volume expansion with low molecular weight hydroxethy starch (HES 200/0.62, 6%)

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To define the mechanisms of the stable and prolonged post-operative plasma volume expansion observed with Hydroxyethyl Starches (HES) and to determine whether a partial intravascular hydrolysis of large molecules contribute to reinforce the colloid-osmotic effect.

Design

Prospective, pharmacologic study using single dose of drug.

Setting

University-based, post-anesthesia care unit.

Patients

The protocol was performed during the post-operative period, in 10 patients after stable recovery from general anesthesia for carotid endarterectomy.

Interventions

HES 200/0.62 (500 ml) was infused over 30 min. Standard hemodynamic and biological variables, HES concentration and colloid osmotic pressure were obtained at each measurement. Plasma volume was calculated using51Cr-labelled RBCs. Patterns of changes in number average molecular weight (MWn) and weight average MW (MWw) were measured using gel permeation chromatography. Measurements were obtained at control, end of infusion, 1 h, 3 h, 6 h and 24 h after infusion.

Measurements and main results

Plasma volume increased by 693 ml (+21%) after the infusion of HES and remained constant over 24 h. HES concentration progressively decreased to reach a value of 35% of the peak at 24 h. MWn and MWw, initially decreased when compared with the dose solution and changed little in the 24 h study period. Diuresis significantly decreased at 3 h up to 24 h. Plasma albumin decreased after infusion and then progressively increased to reach a significantly higher value at 24 h than after infusion.

Conclusion

Initial plasma volume expansion and decrease in HES concentration agree with previously-published data. Maintenance of plasma volume expansion over 24 h was not related to a partial intravascular hydrolysis. Low elimination rate of HES, extravascular mobilization of albumin and post-operative renal adaptations were possibly the 3 main mechanisms to explain a prolonged plasma volume expansion with HES 200/0.62, 6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson WL (1980) Hydroxyethyl starch. Dev Biol Stand 44:259–266

    Google Scholar 

  2. Thompson WL, Britton JJ, Watton RP (1962) Persistence for starch derivative and dextran when infused after hermorrhage. J Pharmacol Exp 136:125–132

    Google Scholar 

  3. Lederer K, Huber C, Dunky M, Fink J, Ferber H, Nitsch E (1985) Studies on hydroxyethyl starch. Part I: Molecular characterization by size exclusion chromatography coupled with low angle laser light sattering. Arzneimittelforsch Drug Res 35:610–614

    Google Scholar 

  4. Rackow EC, Falk JL, Fein IA, Siegel JS, Packman MI, Haupt MT, Kaufman BS, Putman D (1983) Fluid resuscitation in circulatory shock: a comparison of the cardiorespiratory effects of albumin, hetastarch and saline solutions in patients with hypovolemic and septic shock. Crit Care Med 11:839–851

    PubMed  Google Scholar 

  5. Damon L, Adams M, Stricker RB, Ries C (1987) Intracranial bleeding during treatment with hydroxyethyl starch. N Engl J Med 317:964–965

    Google Scholar 

  6. Boon JC, Jesh F, Ring J, Messmer K (1976) Long term intravascular persistence of hydroxyethyl starch in man. Eur Surg Res 8:497–503

    PubMed  Google Scholar 

  7. Iguchi K, Ikeda K (1971) Clinical investigations of a new plasma expander partially substituted HES. Med Consul N Rem 8:139–150

    Google Scholar 

  8. Kolher H, Zscheidrich H, Linfante A, Appel F, Pitz H, Clasen R (1982) The elimination of hydroxyethyl Starch 200/0.5, dextran 40 and oxypolygelatin. Klin Wochenschr 60:293–301

    PubMed  Google Scholar 

  9. Mishler JM, Parry ES, Sutherland BA, Bushrod JR (1979) A clinical study of low molecular weight hydroxyethyl starch, a new plasma expander. Br J Clin Pharmacol 7:619–622

    PubMed  Google Scholar 

  10. London MJ, Ho JS, Triedman JK, Verrier ED, Levin J, Merrick SH, Hanley FL, Browner WS, Mangano DT (1989) A randomized clinical trial of 10% pentastarch (low molecular weight hydroxyethyl starch) versus 5% albumin for plasma volume expansion after cardiac operations. J Thorac Cardiovasc Surg 97:785–797

    PubMed  Google Scholar 

  11. Rosencher N, Vassilieff N, Guigonis V, Toulon P, Conseiller C (1992) Effects of Elohes and albumin on haemostasis in orthopaedic surgery. Ann Fr Anesth Réanim 11:526–530

    Google Scholar 

  12. Mishler J, Ricketts C, Parkhouse E (1979) Changes in the molecular compostion of circulating hydroxyethyl starch following consecutive daily infusions in man. Br J Clin Pharm 7: 505–509

    Google Scholar 

  13. Ferber HP, Nitsch E, Förster H (1985) Studies on hydroxyethyl starch. Part II: changes of the molecular weight distribution of hydroxyethyl starch types 450/0.7, 450/0.5, 450/0.3, 300/0.4, 200/0.7, 200/0.5, 200/0.3, 200/0.1 after infusion in urine and serum of volonteers. Arzneimittelforschung 35: 615–622

    PubMed  Google Scholar 

  14. Quon CY (1988) Clinical pharmacokinetics and pharmacodynamics of colloidal plasma volume expanders. J Cardiothorac Anesth 2:13–23

    Google Scholar 

  15. Kalhorn F, Yacob A, Sum C (1984) Billilary excretion of hydroxyethyl starch in man. Biomedic Mass Spectrometry 11:164–166

    Google Scholar 

  16. Grootendorst AF, Van Wilgenburg MGM, De Laat PHJM, Van der Hoven B (1988) Albumin abuse in intensive care medicine. Intensive Care Med 14:554–557

    PubMed  Google Scholar 

  17. International Committee for standardization in Haermatology (ICSH) (1973) Standard techniques for the measurement of red cell and plasma volume. Br J Haematol 25:795–814

    Google Scholar 

  18. Najean Y, Deschryuer F (1984) The body venous haematocrit ratio and its use for calculating total blood volume from fractional volumes. Em J Nucl Med 9:558–560

    Google Scholar 

  19. Metcalf W, Papadopoulos A, Tufaro R, Barth A (1970) A clinical physiologic study of hydroxyethyl starch. Surg Gynecol Obstet 131:255–267

    PubMed  Google Scholar 

  20. Parving HH, Gyntelberg F (1973) Transcapillary escape rate of albumin and plasma volume in essential hypertension. Circ Res 32:643–651

    PubMed  Google Scholar 

  21. Hoye RC, Bennet SH, Geelhoed GW et al (1972) Fluid volume and albumin kinetics occuring with major surgery. JAMA 222:1255–1261

    PubMed  Google Scholar 

  22. Mizuta S, Keiichi I, Kiyoshi I (1971) Clinical investigation of HES in respect of circulatory movement, metabolism and excretion. Med Consul N Remed 8:2493–2497

    Google Scholar 

  23. Wiedler B, Von Bormann B, Sommermeyr K, Lohmann E, Peil J, Hempelmann G (1991) Pharmakokinetische Merkmale als Kriterien für den klinischen Einsatz von Hydroxyethylstärke. Arzneimittelforsch Drug Res 41:494–498

    Google Scholar 

  24. Hulse JD, Yacobi A (1983) Hetastarch: an over view of the colloid and its metabolism. Drug Intell Clin Pharmacol 17:334–341

    Google Scholar 

  25. Koehler H, Kirch W, Weihrauch TR, Prellwitz W, Horstmann HJ (1977) Macroamylasaemia after treatment with hydroxyethyl starch. Eur J Clin Invest 7:205–211

    PubMed  Google Scholar 

  26. Willms CD, Davidson IJA, Almstrong JM, Kwom M, Risser R, Sandor ZF, Sentenentes JT (1991) Pentafraction-Du Pont versus albumin for resuscitation of a lethal intestinal ischemic shock in rats. Circ Shock 33:216–221

    PubMed  Google Scholar 

  27. Lundsgaard-Hansen P (1986) Physiology and pathophysiology of colloid osmotic pressure and albumin metabolism. Curr Stud Hematol Blood Transf 53:1–17

    Google Scholar 

  28. Wood GA, Lewitt SH (1965) Simultaneous red cell mass and plasma volume determination using 51 Cr tagged red cells and 125-l labelled albumin. J Nucl Med 6:433–440

    Google Scholar 

  29. Ferrant A, Lewis SA, Szur L (1982) The elution of 99 m Tc from red cells and its effect on red cells volume measurement. J Clin Pathol 27:373–380

    Google Scholar 

  30. Baron JF, De Kegel D, Prost AC, Mundler O, Maistre G, Carayon A, Landault C, Barré E, Viars P (1991) Hemodynamic and hormonal effects of normovolemic hemodilution using hydroxyethyl starch. Clin Intensive Care 2:22–26

    Google Scholar 

  31. Baron JF, De Kegel D, Prost AC, Mundler O, Arthaud M, Basset G, Maistre G, Masson F, Carrayon A, Landault C, Barre E, Viars P (1991) Low molecular weight hydroxyethyl starch 6% compared to albumin 4% during intentional hemodilution. Intensive Carc Med 17:141–148

    Google Scholar 

  32. Mishler JM (1984) Synthetic plasma volume expanders: their pharmacology, safety and clinical efficacy. Clin Haematol 13:75–92

    PubMed  Google Scholar 

  33. Rackow EC, Mecher C, Astiz ME, Griffel M, Falk JL, Weil H (1989) Effects of pentastarch and albumin infusion on cardiorespiratory function and coagulation in patients with severe sepsis and systemic hypoperfusion. Crit Care Med 17:396–398

    Google Scholar 

  34. Lijedahl SO, Rieger S (1967) Importance of thoracic duct lymph in restitution of plasma volume and plasma proteins after bleeding and immediate substitution in the splenectomized dog. Acta Chir Scand [Suppl] 379:39–51

    Google Scholar 

  35. Kohler H, Zchiedrich H, Clasen R, Linfante A, Gamm H (1982) Blutvolumen, kolloidaler osmotischer Druck und Nierenfunktion von Probanden nach Infusion mittelmolekularer 10% Hydroxyethylstärke 200/0.5 und 10% dextran 40. Anaesthesist 31:61–67

    PubMed  Google Scholar 

  36. Rothschild MA, Oratz M, Schreiber SS (1979) Extravascular albumin. N Engl J Med 301:497–498

    PubMed  Google Scholar 

  37. Rothschild MA, Oratz M, Schreiber SS (1972) Albumin synthesis. N Engl J Med 286:748–757

    PubMed  Google Scholar 

  38. Krasna MJ, Scott GE, Scholz PM (1986) Postoperative enhancement of urinary output in patients with acute renal failure using continuous furosemide therapy. Chest 89:294–295

    PubMed  Google Scholar 

  39. Hall JE (1986) Regulation of glomerular filtration rate and sodium excretion by angiotensin II. Fed Proc 45: 1431–1437

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degrémont, A.C., Ismaïl, M., Arthaud, M. et al. Mechanisms of postoperative prolonged plasma volume expansion with low molecular weight hydroxethy starch (HES 200/0.62, 6%). Intensive Care Med 21, 577–583 (1995). https://doi.org/10.1007/BF01700163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01700163

Key words

Navigation