Skip to main content
Log in

Gene products which play a role in cancer invasion and metastasis

  • 10th San Antonio Breast Cancer Symposium — Plenary lecture
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

Invasion requires a number of distinct tumor cell interactions with host tissue, beginning with attachment to the matrix, followed by hydrolysis of matrix material and locomotion. Gene products which may be involved in these steps are discussed here. Laminin receptors and integrins have roles in the adhesion phase, while certain collagenases are prominent among the matrix-degrading enzymes. Autocrine motility factors, distinct from growth factors, appear to be involved in tumor cell locomotion. Finally, certain oncogenes, partricularly of theras family, are closely related with metastatic potential. A detailed understanding of the molecular biology of invasion and metastasis could ultimately lead to specific means of interfering with or even reversing these malignant processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sugarbaker EV: Patterns of metastasis in human malignancies. Cancer Biol Rev 2: 235, 1981

    Google Scholar 

  2. Weiss L, Gilbert HA: Bone Metastases. GK Hall, Medical Publishers, Boston, 1981

    Google Scholar 

  3. Schirrmacher V: Cancer metastasis: Experimental approaches, theoretical concepts, and impacts for treatment strategies. Adv Cancer Res 43: 1–73, 1985

    PubMed  Google Scholar 

  4. Liotta LA: Tumor invasion and metastases — role of the extracellular matrix: Rhoads Memorial Award Lecture. Cancer Res 46: 1, 1986

    PubMed  Google Scholar 

  5. Barsky SH, Siegal GP, Jannotta F, Liotta LA: Loss of basement membrane components by invasive tumors but not their benign counterparts. Lab Invest 49: 140–148, 1983

    PubMed  Google Scholar 

  6. Forester SJ, Talbot IC, Critshley DR: Laminin and fibronectin in rectal adenocarcinoma: Relationship to tumor grade, stage and metastasis. Br J Cancer 50: 51–61, 1984

    PubMed  Google Scholar 

  7. Wewer UM, Liotta LA, Jaye M,et al.: Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin. Proc Natl Acad Sci USA 83: 7137, 1986

    PubMed  Google Scholar 

  8. Rao CN, Margulies IM, Tralken S,et al.: Isolation of a subunit of laminin and its role in molecular structure and tumor cell attachment. J Biol Chem 257: 9740–9750, 1982

    PubMed  Google Scholar 

  9. Engel J, Odermatt E, Engel A,et al.: Shapes, domain, organization, and flexibility of laminin and fibronectin, two multifunctional proteins of the ECM. J Mol Biol 150: 97–108, 1981

    PubMed  Google Scholar 

  10. Barsky SH, Rao CN, William JE, Liotta LA: Laminin molecular domains which alter metastasis in a murine model. J Clin Invest 74: 843–848, 1984

    PubMed  Google Scholar 

  11. Hynes RO: Integrins: A family of cell surface receptors. Cell 48: 549, 1987

    PubMed  Google Scholar 

  12. Furcht LT: Editorial: Critical factors controlling angiogenesis: Cell products, cell matrix, and growth factors. Lab Invest 55: 505, 1986

    PubMed  Google Scholar 

  13. Thorgeirsson UP, Turpeenniemi-Hujanen T, Neckers LM, Johnson DW, Liotta LA: Protein synthesis but not DNA synthesis is required for tumor cell invasionin vitro. Invas Metast 4: 73–83, 1984

    Google Scholar 

  14. Liotta, LA, Thorgeirsson UP, Garbisa S: Role of collagenases in tumor cell invasion. Cancer Metast Rev 1: 277–288, 1982

    Google Scholar 

  15. Goldberg GI, Wilhelm SM, Kronberger A, Bauer EA, Grant GA, Eisen AZ: Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein. J Biol Chem 261: 6600–6605, 1986

    PubMed  Google Scholar 

  16. Fini ME, Plucinska IM, Mayer AS, Gross RH, Brinckerhoff CE: A gene for rabbit synovial cell collagenase: Member of a family of metalloproteinases that degrade the connective tissue matrix. Biochemistry 26: 6156–6165, 1987

    PubMed  Google Scholar 

  17. Huang C-C, Blitzer A, Abramson M: Collagenase in human head and neck tumors and rat tumors and fibroblasts in monolayer cultures. Ann Otol Rhinol Laryngol 95: 158–161, 1986

    PubMed  Google Scholar 

  18. Fessler LI, Duncan KG, Fessler JH: Characterization of the procollagen IV cleavage products produced by a specific tumor collagenase. J Biol Chem 259: 9783–9789, 1984

    PubMed  Google Scholar 

  19. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S: Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284: 67–68, 1980

    PubMed  Google Scholar 

  20. Sloane BF, Honn KV: Cysteine proteinases and metastasis. Cancer Metast Rev 3: 249–263, 1984

    Google Scholar 

  21. Weinberg RA: Oncogenes of spontaneous and chemically induced tumors. Adv Cancer Res 36: 149–156, 1982

    PubMed  Google Scholar 

  22. Hunter T: Oncogenes and proto-oncogenes: How do they differ? J Natl Cancer Inst 73: 773–786, 1984

    PubMed  Google Scholar 

  23. Chang EH, Furth ME, Scolnick EM, Lowry DR: Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Proc Natl Acad Sci USA 78: 3328–3332, 1981

    PubMed  Google Scholar 

  24. Nicolson GL: Tumor cell instability, diversification, and progression to the metastatic phenotype: From oncogene to oncofetal expression. Cancer Res 47: 1473–1487, 1987

    PubMed  Google Scholar 

  25. Thorgeirsson UP, Turpeenniemi-Hujanen T, Williams JE, Westin EH, Heilman CA, Talmadge JE, Liotta LA: NIH/3T3 cells transfected with human tumor DNA containing activated ras oncogenes express the metastatic phenotype in nude mice. Mol Cell Biol 5: 259–262, 1985

    PubMed  Google Scholar 

  26. Muschel RJ, Williams JE, Lowry DR, Liotta LA: Harveyras induction of metastatic potential depends upon oncogene activation and the type of recipient cell. Am J Pathol 121: 1–8, 1985

    PubMed  Google Scholar 

  27. Bondy GP, Wilson S, Chambers AF: Experimental metastatic ability of H-ras transformed NIH-3T3 cells. Cancer Res 45: 6005–6009, 1985

    PubMed  Google Scholar 

  28. Greig RG, Koestler TP, Trainer DL, Corwin SP, Miles L, Kline T, Sweet R, Yokoyama S, Poste G: Tumorigenic and metastatic properties of ‘normal’ andras-transfected NIH/3T3 cells. Proc Natl Acad Sci USA 82: 3698–3701, 1985

    PubMed  Google Scholar 

  29. Egan SE, McClarty GA, Jarolim L, Wright JA, Spiro I, Hager G, Greenberg AH: Expression of H-ras correlates with metastatic potential: Evidence for direct regulation of the metastatic phenotype in 10T1/2 and NIH 3T3 cells. Mol Cell Biol 7: 830–837, 1987

    PubMed  Google Scholar 

  30. Vousden KH, Eccles SA, Purvies H, Marshall CJ: Enhanced spontaneous metastasis of mouse carcinoma cells transfected with an activated c-Ha-ras-1 gene. Int J Cancer 37: 425–433, 1986

    PubMed  Google Scholar 

  31. Kerbel RS, Waghorne C, Man MS, Elliott B, Breitman ML: Alteration of the tumorigenic and metastatic properties of neoplastic cells is associated with the process of calcium phosphate-mediated DNA transfection. Proc Natl Acad Sci USA 84: 1263–1267, 1987

    PubMed  Google Scholar 

  32. Collard JG, Schijven JF, Roos E: Invasive and metastatic potential induced byras-transfection into mouse BW5147 T-lymphoma cells. Cancer Res 47: 754–759, 1987

    PubMed  Google Scholar 

  33. Muschel RJ, Nakahara K, Chu E, Pozzatti R, Liotta LA: Karyotypic analysis of diploid or near diploid metastatic Harveyras transformed rat embryo fibroblasts. Cancer Res 46: 4104–4108, 1986

    PubMed  Google Scholar 

  34. Pozzatti R, Muschel R, Williams J, Padmanabhan R, Howard B, Liotta L, Khoury G: Primary rat embryo cells transformed by one or two oncogenes show different metastatic potentials. Science 232: 223–227, 1986

    PubMed  Google Scholar 

  35. Gullino PM, Pettigrew NM, Grantharn FH: N-nitroso-methylurea as a mammary gland carcinoma in rats. J Natl Cancer Inst 54: 401–409, 1975

    PubMed  Google Scholar 

  36. Sukumar S, Notario V, Martin-Zanca D,et al.: Induction of mammary carcinomas in rats by NMU involves malignant activation of Ha-ras-1 locus by a single point mutation. Nature 306: 658–661, 1983

    PubMed  Google Scholar 

  37. Garbisa S, Pozzatti R, Muschel RJ, Saffiotti U, Ballin M, Goldfarb RH, Khoury G, Liotta LA: Secretion of type IV collagenolytic protease and metastatic phenotype: Induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-E1a. Cancer Res 47: 1523–1528, 1987

    PubMed  Google Scholar 

  38. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS: β1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236: 582–585, 1987

    PubMed  Google Scholar 

  39. Liotta LA, Mandler R, Murano G, Katz DA, Gordon RK, Chiang PK, Schiffmann E: Tumor cell autocrine motility factor. Proc Natl Acad Sci USA 83: 3302–3306, 1986

    PubMed  Google Scholar 

  40. Fleischman LF, Chahwala SB, Cantley L:Ras-transformed cells: Altered levels of phosphatidylinositol-4,5-bisphosphate and catabolites. Science 231: 407–410, 1986

    PubMed  Google Scholar 

  41. Egan SE, Wright JA, Jarolim L, Yanagihara K, Bassin RH, Greenberg AH: Transformation by oncogenes encoding protein kinases induces the metastatic phenotype. Science 238: 202–205, 1987

    PubMed  Google Scholar 

  42. Smith MR, DeGudicibus SJ, Stacey DW: Requirement for c-ras proteins during viral oncogene transformation. Nature 320: 540–543, 1986

    PubMed  Google Scholar 

  43. Jaggi R, Salmons B, Muellener D, Groner B: The v-mos and H-ras oncogene expression represses glucocorticoid hormone-dependent transcription from the mouse mammary tumor virus LTR. EMBO J 5: 2609–2616, 1986

    PubMed  Google Scholar 

  44. Rabin MS, Doherty PJ, Gottesman MM: The tumor promoter phorbol 12-myristate 13-acetate induces a program of altered gene expression similar to that induced by platelet-derived growth factor and transforming oncogenes. Proc Natl Acad Sci USA 83: 357–360, 1986

    PubMed  Google Scholar 

  45. Cline MJ, Battifora H, Yokota J: Proto-oncogene abnormalities in human breast cancer: Correlations with anatomic features and clinical course of disease. J Clin Oncol 5: 999–1006, 1987

    PubMed  Google Scholar 

  46. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182, 1987

    PubMed  Google Scholar 

  47. Kolata G: Oncogenes give breast cancer prognosis. Science 235: 160–161, 1987

    PubMed  Google Scholar 

  48. van de Vijver M, van de Bersselaar R, Devilee P, Cornelisse C, Peterse J, Nusse R: Amplification of theneu (c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. Mol Cell Biol 7: 2019–2023, 1987

    PubMed  Google Scholar 

  49. Agnantis NJ, Parissi P, Anagnostakis D, Spandidos DA: Comparative study of Harvey-ras oncogene expression with conventional clinicopathologic parameters of breast cancer. Oncology 43: 36–39, 1986

    PubMed  Google Scholar 

  50. Clair T, Miller WR, Cho-Chung YS: Prognostic significance of the expression of aras protein with a molecular weight of 21,000 by human breast cancer. Cancer Res 47: 5290–5293, 1987

    PubMed  Google Scholar 

  51. Horan Hand P, Vilasi V, Thor A, Ohuchi N, Schlom J: Quantitation of Harveyras p21 enhanced expression in human breast and colon carcinomas. J Natl Cancer Inst 79: 59–65, 1987

    PubMed  Google Scholar 

  52. Lundy J, Grimson R, Mishriki Y, Chao S, Oravez S, Fromowitz F, Viola MV: Elevatedras oncogene expression correlates with lymph node metastases in breast cancer patients. J Clin Oncol 4: 1321–1325, 1986

    PubMed  Google Scholar 

  53. Yokota J, Tsunetsugu-Yokota Y, Battifora H, Le Fevre C, Cline MJ: Alterations ofmyc, myb, andras Ha proto-oncogenes in cancers are frequent and show clinical correlation. Science 231: 261–265, 1986

    PubMed  Google Scholar 

  54. Seeger RC, Broudeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D: Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313: 1111–1116, 1985

    PubMed  Google Scholar 

  55. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM: Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121–1124, 1984

    PubMed  Google Scholar 

  56. Nau MM, Brooks BJ, Carney DN, Gazdar AF, Battey JF, Sausville EA, Minna JD: Human small-cell lung cancers show amplification and expression of the N-myc gene. Proc Natl Acad Sci USA 83: 1092–1096, 1986

    PubMed  Google Scholar 

  57. Tsuboi K, Hirayoshi K, Takeuchi K, Sabe H, Shimada Y, Ohshio G, Tobe T, Hatanaka M: Expression of the c-myc gene in human gastrointestinal malignancies. Biochem Biophys Res Commun 146: 699–704, 1987

    PubMed  Google Scholar 

  58. Lam WC, Delikatny JE, Orr FW, Wass J, Varani J, Ward PA: The chemotactic response of tumor cells: A model for cancer metastasis. Am J Pathol 104: 69–76, 1981

    PubMed  Google Scholar 

  59. McCarthy JB, Basara ML, Palm SL, Sas DF, Furcht LT: Stimulation of haptotaxis and migration of tumor cells by serum spreading factor. Cancer Metast Rev 4: 125–152, 1985

    Google Scholar 

  60. Stracke ML, Guirguis R, Liotta LA, Schiffmann E: Pertussis toxin inhibits stimulated motility independently of the adenylate cyclase pathway in human melanoma cells. Biochem Biophys Res Commun 146: 339–345, 1987

    PubMed  Google Scholar 

  61. Guirguis R, Margulies IMK, Taraboletti G, Schiffmann E, Liotta LA: Cytokine-induced pseudopodial protrusion is coupled to tumour cell migration. Nature 329: 261–263, 1987

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liotta, L.A. Gene products which play a role in cancer invasion and metastasis. Breast Cancer Res Tr 11, 113–124 (1988). https://doi.org/10.1007/BF01805835

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01805835

Key words

Navigation