Skip to main content
Log in

Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The aim of the study was to investigate the mechanisms of the Cheneau-Toulouse-Munster (CTM) brace in the correction of scoliotic curves, at night in the supine position. Magnetic resonance imaging (MRI) and Computer tomography (CT) acquisitions were performed in vivo on eight girls having an idiopathic scoliosis and being treated for the first time using a personalised CTM brace. Personalised 3D finite element models of the spine were developed for each patient, and an optimisation approach was used to quantify the forces generated by each brace on each scoliotic spine. A sensitivity study was undertaken to test the assumptions about intervertebral behaviour and load transmission from the brace to the spine. The computed CTM brace forces were 9-216N in the coronal plane and 2-72N in the sagittal plane. Personalised spinal stiffness properties should be included in spine models because, in this study, partial correction resulted from the application of higher estimated forces than for total correction. Partially reduced spines should be stiffer than totally reduced spines. The sensitivity study showed that the computed brace forces were proportional to the intervertebral Young's modulus and should be analysed as estimated data. Better knowledge of brace forces should be helpful in brace design to achieve the best correction of first scoliotic deformities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaro, S., Bustrom, R., andDahlbom, M. (1981): ‘The derotating effect of Boston brace: a comparison between computer tomography and a conventional method’,Spine,6, pp. 477–482

    Google Scholar 

  • Andriacchi, T. P., Schultz, A., Belytschko, T., andDewald, R. L. (1976): ‘Milwaukee brace correction of idiopathic scoliosis’,Bone Joint Surg.,58, pp. 806–815

    Google Scholar 

  • Asher, M. A., andCook, L. T. (1995): ‘The transverse plane evolution of the most common adolescent idiopathic scoliosis deformities’,Spine,20, pp. 1386–1391

    Google Scholar 

  • Aubin, C. E., Labelle, H., Ruszkowski, A., Petit, Y., Gignac, D., Joncas, J., andDansereau, J. (1999): ‘Variability of strap tension in brace treatment for adolescent idiopathic scoliosis’,Spine,24, pp. 349–354

    Article  Google Scholar 

  • Barrau, J. J., Chambord, O., Gay, D., andNuc, M. (1985): ‘Homogénéisation en torsion d'une poutre composite’. Troisiéme coloque sur les tendances actuelles en calcul de structure, Bastra, Pluralis, pp. 283–296

    Google Scholar 

  • Belytschko, T. B., Andriacchi, T. P., Schultz, A. B., andGalante, J. O. (1973): “Analog studies of forces in the human spine: computational techniques’,J. Biomech.,6, pp. 361–371

    Article  Google Scholar 

  • Chase, A. P., Bader, D. L., andHoughton, G. R. (1989): ‘The biomechanical effectiveness of the Boston brace in the management of idiopathic scoliosis’,Spine,14, pp. 636–642

    Google Scholar 

  • Cobb, J. R. (1948): ‘Outline of the study of scoliosis’. Instructional course lectures: the American academy of orthopaedic surgeons, Ann Arbo, JW Edwards,5, pp. 264–275

    Google Scholar 

  • Cochran, T., Nachemson, A. L. F. (1985): ‘Long-term anatomic and functional changes in patients with adolescent idiopathic scoliosis treated with the Milwaukee brace’,Spine,10, pp. 127–133

    Google Scholar 

  • Gignac, D., Aubin, C. E., Dansereau, J., andLabelle, H. (2000): ‘Optimisation method for 3D bracing correction of scoliosis using a FE model’,Eur. Spine,9, pp. 185–190

    Google Scholar 

  • Labelle, H., Dansereau, J., Bellefleur, C., andPoitras, B. (1996): ‘Three-dimensional effect of the Boston brace on the thoracic spine and the rib cage’,Spine,21, pp. 59–64

    Article  Google Scholar 

  • Jiang, H., Raso, V., Hil, D., Durdle, N., andMoreau, M. (1992): ‘Interface pressure in the Boston brace treatment for scoliosis: a preliminary study’ inDansereau, J. (Ed.): ‘International Symposium on 3D Scoliotic Deformities’ (Editions de l'ecole Polytechnique and Gustav Fischer Verlag, Stuttgart, 1992), pp. 395–399

    Google Scholar 

  • Mulcahy, T., Galante, J., DeWald, R., Schultz, A. B., andHunter, J. C. (1973): ‘A follow-up study of forces acting on the milwaukee brace on patients undergoing treatment for idiopathic scoliosis’,Clin. Orthopaed. Related Res.,93, pp. 53–68

    Google Scholar 

  • Panjabi, M., Brand, R., andWhite, A. (1976): “Three-dimensional flexibility and stiffness properties of the human thoracic spine’,J. Biomech.,9, pp. 185–192

    Article  Google Scholar 

  • Patwardan, A. G., Li S., Gavin, T., Lorenz, M., Meade, K. P., andZindrick, M. (1990): ‘Orthotic stabilization of thoracolumbar injuries, a biomechanical analysis of the Jewett hyperextension orthosis’,Spine,15, pp. 654–661

    Google Scholar 

  • Périé, D., andHobatho, M. C. (1998): ‘In vivo determination of contact areas and pressure of the femorotibial joint using non linear finite element analysis’,Clin. Biomech.,13, pp. 394–402

    Google Scholar 

  • Périé, D., Sales De Gauzy, J., Sévely, A., andHobatho, M. C. (2001): ‘In vivo geometrical evaluation of CTM brace effect on scoliotic spine using MRI method’,Clin. Biomech.,16, pp. 129–137

    Google Scholar 

  • Périé, D., Sales de Gauzy, J., Baunin, C., andHobatho, M. C. (2001): ‘Tomodensitometry measurements forin vivo quantification of mechanical properties of scoliotic vertebrae’,Clin. Biomech.,16, pp. 373–379

    Google Scholar 

  • Schultz, A. B., Haderspeck, K., andTakashima, S. (1981): ‘Correction of scoliosis by muscle stimulation, biomechanical analysis’,Spine,6, pp. 468–476

    Google Scholar 

  • Shinoto, A., Ohtsuka, Y., andInoue, S. (1987): ‘Three-dimensional analysis of the effect of brace treatment on idiopathic scoliosis’ (Gustav Fisher Verlag, Stuttgart, 1987), pp. 113–130

    Google Scholar 

  • Stokes, I. A. F., andLaible, J. P. (1990): ‘Three-dimensional osseoligamentous model of the throax representing initiation of scoliosis by asymmetric growth’,J. Biomech.,23, pp. 589–595

    Google Scholar 

  • Sundaram, S. H., andFeng, C. C. (1977): ‘Finite element analysis of the human thorax’,J. Biomech. 10, pp. 505–516

    Article  Google Scholar 

  • Viviani, G. R., Ghista, D. N., Lozada, P. J., Dubbaraj, J. K., andBarnes, G. (1986): ‘Biomechanical analysis and simulation of scoliosis surgical correction’,Clin. Orthopaed. Related Res.,208, pp. 40–47

    Google Scholar 

  • Willers, U., Normelli, H., Aaro, S., Svensson, O., andHedlund, R. (1993): ‘Long-term results of Boston brace treatment on vertebral rotation inidiopathic scoliosis’,Spine,18, pp. 432–435

    Google Scholar 

  • Wynarsky, G. T., andSchultz, A. B. (1991): ‘Optimization of skeletal configuration: studies of scoliosis correction biomechanics’,Biomech.,24, pp. 721–732

    Google Scholar 

  • Yoganandan, N., Kumaresan, S. C., Voo, L., Pintar, F. A., andLarson, S. J. (1996): ‘Finite element modelling of the C4-C6 cervical spine unit’,Med. Eng. Phys.,18, pp. 569–574

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Périe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Périe, D., De Gauzy, J.S. & Hobatho, M.C. Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method. Med. Biol. Eng. Comput. 40, 296–301 (2002). https://doi.org/10.1007/BF02344211

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344211

Keywords

Navigation