Skip to main content
Log in

Mathematical models of the spatial distribution of retinal oxygen tension and consumption, including changes upon illumination

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To better understand oxygen utilization by the retina, a mathematical model of oxygen diffusion and consumption in the cat outer, avascular retina was developed by analyzing previously recorded profiles of oxygen tension (PO2) as a function of retinal depth. Simple diffusion modelling of the oxygen distribution through the outer retina is possible because the PO2 depends only on diffusion from the choroidal and retinal circulations and on consumption within the tissue. Several different models were evaluated in order to determine the best one from the standpoints of their ability to represent the data and to agree with physiological reality. For the steady state one-dimensional diffusion model adopted (the special three-layer diffusion model), oxygen consumption was constant through the middle layer and zero in the layers near the choroid and near the inner retina. On the average, the oxygen consuming layer, as found by nonlinear regression for each profile, extended from about 75% to 85% of the retinal depth from the vitreous. This is a narrow band through the mid-region of the photoreceptors. Oxygen consumption of the entire avascular retina, determined from fitting eight PO2 profiles measured in light-adapted retinas, averaged 2.7 ml O2(STP)/(100 g tissue · min), while the value determined from fitting thirty-two PO2 profiles measured in dark-adapted retinas averaged 4.4 ml O2(STP)/(100 g tissue · min). Consumption in the light was thus only 60% of that in the dark. This suggests that the outer retina is at greater risk of hypoxic injury in the dark than in the light, a fuinding of considerable clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alder, V.A.; Cringle, S.J.; Constable, I.J. The retinal oxygen profile in cats. Invest. Ophthalmol. Vis. Sci. 24:30–36; 1983.

    CAS  PubMed  Google Scholar 

  2. Bill, A. Circulation in the eve. In Renkin, E.M.; Mickel, C.C., eds. Handbook of Physiology. The cardiovascular system IV. Bethesda, MD: American Physiology Society; 1984; pp. 1001–1034.

    Google Scholar 

  3. Brown, K.T. Optical stimulator, microelectrode advancer and associated equipment for intraretinal neurophysiology in closed mammalian eyes. Opt. Soc. Am. J. 54:101–109; 1964.

    CAS  Google Scholar 

  4. Brown, K.T. The electroretinogram: Its components and their origins. Vision Res. 8:633–677; 1968.

    CAS  PubMed  Google Scholar 

  5. Clark, D.K.; Erdmann, W.; Halsey, J.H.; Strong, E. Oxygen diffusion, conductivity and solubility coefficients in the microarea of the brain. Adv. Exp. Med. Biol. 94:225–232; 1978.

    Google Scholar 

  6. Cohen, L.H.; Noell, W.K. Relationships between visual function and metabolism. In: Graymore C.N., ed. Biochemistry of the retina. New York: Academic Press, Inc.; 1965: pp. 36–49.

    Google Scholar 

  7. Dollery, C.T., Bulpitt, C.J.; Kohner, E.M. Oxygen supply to the retina from the retinal and choroidal circulations at normal and increased arterial oxygen tensions. Invest. Ophthalmol. 8:588–594; 1969.

    CAS  PubMed  Google Scholar 

  8. Ganfield, R.A.; Nair, P.; Whalen, W.J. Mass transfer, storage and utilization of oxygen in cat cerebral cortex. Am. J. Physiol. 219:814–821; 1970.

    CAS  PubMed  Google Scholar 

  9. Goldstick, T.K. Oxygen transport. In: Brown, J.H.U.; Gann, D.S., eds. Engineering principles in physiology, vol. II, New York: Academic Press, Inc.; 1973: pp. 257–282.

    Google Scholar 

  10. Haugh, L.M. A model of oxygen distribution and consumption in the cat retina in light and darkness. Biomedical Engineering Department, Northwestern University, Evanston, IL; 1988. Thesis. 152 pp.

    Google Scholar 

  11. Haugh, L.M.; Linsenmeier, R.A.; Goldstick, T.K. Spatial heterogeneity of oxygen consumption in the cat in light and darkness. Invest. Ophthalmol. Vis. Sci., Suppl. 29:413; 1988.

    Google Scholar 

  12. Hubbard, R. The respiration of the isolated rod outer limb of the frog retina. J. Gen. Physiol. 37:373–379; 1954.

    CAS  PubMed  Google Scholar 

  13. Kimble, E.A.; Svoboda, R.A.; Ostroy, S.E. Oxygen consumption and ATP changes of the vertebrate photoreceptor. Exp. Eye Res. 31:271–288; 1980.

    CAS  PubMed  Google Scholar 

  14. Ladman, A.J. The fine structure of the rod-bipolar cell synapse in the retina of the albino rat. J. Biophys. Biochem. Cytol. 4:459–465; 1958.

    CAS  PubMed  Google Scholar 

  15. Landers, M.B., III. Retinal oxygenation from the choroidal circulation. Trans. Am. Ophthalmol. Soc. 76:528–556; 1978.

    PubMed  Google Scholar 

  16. Linsenmeier, R.A. Effects of light and darkness on oxygen distribution and consumption in the cat retina. J. Gen. Physiol. 88:521–542; 1986.

    Article  CAS  PubMed  Google Scholar 

  17. Linsenmeier, R.A.; Yancey, C.M. Improved fabrication of double-barreled recessed cathode oxygen microelectrodes. J. Appl. Physiol. 63(9):2554–2557; 1987.

    CAS  PubMed  Google Scholar 

  18. Linsenmeier, R.A.; Yancey, C.M. Effects of hyperoxia on the oxygen distribution in the intact cat retina. Invest. Ophthalmol. Vis. Sci. 30:612–618; 1989.

    CAS  PubMed  Google Scholar 

  19. Prince, J.H.; Diesem, C.D.; Eglitis, I.; Ruskell, G.L. Anatomy and histology of the eye and orbit in domestic animals. Springfield, IL: Charles C Thomas; 1960.

    Google Scholar 

  20. Purves, M.J. The physiology of the cerebral circulation. Cambridge, MA: Cambridge University Press; 1972.

    Google Scholar 

  21. Reading, H.W.; Sorsby, A. The metabolism of the dystrophic retina. I. Comparative studies on the glucose metabolism of the developing rat retina, normal and dystrophic. Vision Res. 2:315–325; 1962.

    Article  CAS  Google Scholar 

  22. Robertis, E.D. Electron microscope observations on the submicroscopic organization of the retinal rods. J. Biophys. Biochem. Cytol. 2:319–329; 1956.

    Google Scholar 

  23. Robinson, B. NLREG nonlinear regression subroutine package. Evanston, IL: Vogelback Computing Center, Northwestern University; 1972.

    Google Scholar 

  24. Roh, H.-D.; Goldstick, T.K.; Linsenmeier, R.A. Spatial variation of the local tissue oxygen diffusion coefficient measured in situ in the cat retina and cornea. Adv. Exp. Med. Biol. in press.

  25. Schneiderman, G.; Goldstick, T.K. Oxygen electrode design criteria and performance characteristics: recessed cathode. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45:145–154; 1978.

    CAS  Google Scholar 

  26. Sjostrand, F.S. The ultrastructure of the inner segments of the retinal rods of the guinea pig eye as revealed by electron microscopy. J. Cell. Comp. Physiol. 42:45–70; 1953.

    CAS  Google Scholar 

  27. Steinberg, R.H.; Linsenmeier, R.A.; Griff, E.R. Retinal pigment epithelial cell contributions to the electroretinogram and electrooculogram. In: Osborne, N.N.; Chader, G.J., eds. Progress in retinal research, vol. 4, Oxford: Pergamon Press; 1985: pp. 33–66.

    Google Scholar 

  28. Steinberg, R.H.; Walker, M.L.; Johnson, W.M. A new microelectrode positioner for intraretinal recording from the intact mammalian eye. Vision Res. 8:1521–1523; 1968.

    CAS  PubMed  Google Scholar 

  29. Thews, G. Ein Verfahren zur Bestimmung des O2-Diffusionskoeffizienten, der O2-Leitfahigkeit und des O2-Loslichkeitskoeffizienten in Gehirngewebe. Pflugers Arch. Gesamte Physiol. Menschen Tiere. 271:227–244; 1960.

    CAS  PubMed  Google Scholar 

  30. Tornquist, P.; Alm, A. Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs. Acta Physiol. Scand. 106:351–357; 1979.

    CAS  PubMed  Google Scholar 

  31. Tsacopoulos, M.; Baker, R.; Levy, S. Studies on retinal oxygenation. Adv. Exp. Med. Biol. 75: 413–416; 1976.

    CAS  PubMed  Google Scholar 

  32. Vogel, M. Postnatal development of the cat retina. Berlin: Springer-Verlag; 1978.

    Google Scholar 

  33. Whalen, W.J.; Riley, J.; Nair, P. A microelectrode for measuring intracellular PO2. J. Appl. Physiol. 23:798–801; 1967.

    CAS  PubMed  Google Scholar 

  34. Yancey, C.M.; Linsenmeier, R.A. Oxygen distribution and consumption in the cat retina at increased intraocular pressure. Invest. Ophthalmol. Vis. Sci. 30:600–611; 1989.

    CAS  PubMed  Google Scholar 

  35. Zuckerman, R.; Weiter, JJ. Oxygen transport in the bullfrog retina. Exp. Eye Res. 30:117–127; 1980.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haugh, L.M., Linsenmeier, R.A. & Goldstick, T.K. Mathematical models of the spatial distribution of retinal oxygen tension and consumption, including changes upon illumination. Ann Biomed Eng 18, 19–36 (1990). https://doi.org/10.1007/BF02368415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368415

Keywords

Navigation