Skip to main content
Log in

Mathematical modelling of non-invasive oscillometric finger mean blood pressure measurement by maximum oscillation criterion

  • Communication
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A mathematical study is performed to assess how the arterial pressure-volume (P-V) relationship, blood pressure pulse amplitude and shape affect the results of non-invasive oscillometric finger mean blood pressure estimation by the maximum oscillation criterion (MOC). The exponential models for a relaxed finger artery and for a partly contracted artery are studied. A new modification of the error equation is suggested. This equation and the results of simulation demonstrate that the value of pressure estimated by the MOC does not exactly agree with the value of the true mean blood pressure (the latter being defined as pressure corresponding to maximum arterial compliance). The error depends on the arterial pressure pulse amplitude, as well as on the difference between the arterial pressure pulse shape index and the arterial P-V curve shape index. In the case of contracted finger arteries, the MOC can give an overestimation of up to 19 mmHg, the pressure pulse shape index being 0.21 and the pulse amplitude 60 mmHg. In the case of relaxed arteries, the error is less evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baker, P. D., Westenskow, D. R., andKuck, K. (1997): ‘Theoretical analysis of non-invasive oscillometric maximum amplitude algorithm for estimating mean blood pressure’,Med. Biol. Eng. Comput.,35, pp. 271–278

    Article  Google Scholar 

  • Forster, F. K., andTurney, D. (1986): ‘Oscillometric determination of diastolic, mean and systolic blood pressure—a numerical model’,ASME J. Biomech. Eng.,108, pp. 359–364

    Article  Google Scholar 

  • Jagomägi, K., Talts, J., Raamat, R., andLänsimies, E. (1996): ‘Continuous non-invasive measurement of mean blood pressure in fingers by volume-clamp and differential oscillometric method’,Clin. Physiol.,16, pp. 551–560

    Article  Google Scholar 

  • Marey, E. J. (1876): ‘Pression et vitesse du sang’,in Masson, G. (Ed.): ‘Physiologie experimentale. Trav. du lab. de Marey’ (Paris), pp. 307–343

  • Mauck, G. W., Smith, C. R., Geddes, L. A., andBourland, J. D. (1980): ‘The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure-Part II’,J. Biomech. Eng.,102, pp. 28–33

    Article  Google Scholar 

  • Peñaz, J. (1995): ‘Dynamic vascular compliance and its use in noninvasive measurement of blood pressure’,Homeostasis,36, (2–3), pp. 83–89

    Google Scholar 

  • Peñaz, J., Honzikova, N., andJurak, P. (1997): ‘Vibration plethysmography: a method for studying the visco-elastic properties of finger arteries’,Med. Biol. Eng. Comput.,35, pp. 633–637

    Article  Google Scholar 

  • Posey, J. A., Geddes, L. A., Williams, H., andMoore, A. G. (1969): ‘The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure-Part I’,Cardiovasc. Res. Center Bull., pp. 15–25

  • Reeben, V. andEpler, M. (1983): ‘Indirect continuous measurement of mean arterial pressure’,in Ghista, D. N. (Ed.), ‘Adv. cardiovascular phys., vol. 5, Cardiovascular Engineering. Part II: Monitoring’ (Karger, Basel) pp. 90–118

    Google Scholar 

  • Shimazu, H., Fukuoka, M., Ito, H., andYamakoshi, K. (1985): ‘Noninvasive measurement of beat-to-beat vascular viscoelastic properties in human fingers and forearms’,Med. Biol. Eng. Comput.,23, pp. 43–47

    Article  Google Scholar 

  • Shimazu, H., Ito, H., Kobayashi, H., andYamakoshi, K. (1986): ‘Idea to measure diastolic arterial pressure by volume oscillometric method in human fingers’,Med. Biol. Eng. Comput.,24, pp. 549–554

    Article  Google Scholar 

  • Shimazu, H., Kawarada, A., Ito, H., andYamakoshi, K. (1989a): ‘Electric impedance cuff for the indirect measurement of blood pressure and volume elastic modulus in human limb and finger arteries’,Med. Biol. Eng. Comput.,27, pp. 477–483

    Article  Google Scholar 

  • Shimazu, H., Ito, H., Kawarada, A., Kobayashi, H., Hiraiwa, A., andYamakoshi, K. (1989b): ‘Vibration technique for indirect measurement of diastolic arterial pressure in human fingers’,Med. Biol. Eng. Comput.,27, pp. 130–136

    Article  Google Scholar 

  • Ursino, M., andCristalli, C. (1996): ‘A mathematical study of some biomechanical factors affecting the oscillometric blood pressure measurement’,IEEE Trans.,BME-43, pp. 761–778

    Google Scholar 

  • Wesseling, K. H., Settels, J. J., Van der Hoeven, G. M. A., Nijboer, J. A., Butijn, M. W. T., andDorlas, J. C. (1985): ‘Effects of peripheral vasoconstriction on the measurement of blood pressure in a finger’,Cardiov. Res.,19, pp. 139–145

    Article  Google Scholar 

  • Wesseling, K. H., De Wit B., van der Hoeven, G. M. A., van Godoever, J., andSettels, J. J. (1995): ‘Physiocal, calibrating finger vascular physiology for Finapres’,Homeostasis,36, (2–3), pp. 67–82

    Google Scholar 

  • Wesseling, K. H. (1996): ‘Finger arterial pressure measurement with Finapres’,Z. Kardiol.,85, (Suppl. 3), pp. 38–44

    Google Scholar 

  • Yamakoshi, K., Shimazu, H., andTogawa, T. (1980): ‘Indirect measurement of instantaneous arterial blood pressure in the human finger by the vascular unloading technique’,IEEE Trans.,BME-27, pp. 150–155

    Google Scholar 

  • Yamakoshi, K., Shimazu, H., Shibata, M., andKamiya, A. (1982a): ‘New oscillometric method for indirect measurement of systolic and mean arterial pressure in the human finger. Part I: model experiment’,Med. Biol. Eng. Comput.,20, pp. 307–313

    Article  Google Scholar 

  • Yamakoshi, K., Shimazu, H., Shibata, M., andKamiya, A. (1982b): ‘New oscillometric method for indirect measurement of systolic and mean arterial pressure in the human finger. Part II: correlation study’,Med. Biol. Eng. Comput.,20, pp. 314–318

    Article  Google Scholar 

  • Yamakoshi, K. (1995): ‘Volume-compensation method for noninvasive measurement of instantaneous arterial blood pressure-principle, methodology, and some applications’,Homeostasis,36, (2–3), pp. 90–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Raamat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raamat, R., Talts, J., Jagomägi, K. et al. Mathematical modelling of non-invasive oscillometric finger mean blood pressure measurement by maximum oscillation criterion. Med. Biol. Eng. Comput. 37, 784–788 (1999). https://doi.org/10.1007/BF02513382

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02513382

Keywords

Navigation