Skip to main content
Log in

1,25 Dihydroxyvitamin D3 affects calmodulin distribution among subcellular fractions of skeletal muscle

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

1,25 Dihydroxyvitamin D3 has been shown to stimulate calcium fluxes across skeletal muscle membranes. The involvement of calmodulin in the effects of the metabolite was investigated. Primary cultures of chick embryo skeletal muscle myoblasts and soleus muscles from vitamin D-deficient or 1,25 (OH)2D3-treated chicks were used. Culture of myoblasts and vitamin D-deficient soleus with 1,25 (OH)2D3 (0.05 ng/ml) for 24 and 1 hour, respectively, significantly increased45Ca uptake by the preparations. In the presence of the calmodulin antagonists flufenazine or compound 48/80 in the uptake medium, no differences between control and treated cultures were observed. The calmodulin content of myoblasts and soleus homogenates and subcellular fractions derived therefrom was estimated by measuring their capacity to stimulate calmodulin-depleted cAMP phosphodiesterase. No changes in total calmodulin cellular content could be detected in response to 1,25(OH)2D3. However, the sterol produced an increase in calmodulin levels of microsomes, mitochondria, and crude myofibrillar fraction and a proportional decrease in cytosolic calmodulin concentration. The 1,25(OH)2D3-dependent changes in calmodulin distribution among subcellular fractions of soleus muscle were observed eitherin vivo orin vitro. The effectsin vitro were already detectable after 5 minutes of treatment with the sterol and parallel 1,25(OH)2D3-dependent changes in tissue Ca uptake. The results suggest that changes in calmodulin intracellular distribution may underly part of the mechanism by which 1,25(OH)2D3 affects muscle calcium transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Matthews C, Heimberg KW, Ritz E, Agostini B, Fritzsche J, Hasselbach W (1977) Effect of 1,25-dihydroxycholecalciferol on impaired calcium transport by the sarcoplasmic reticulum in experimental uremia. Kidney Int 11:227–235

    PubMed  CAS  Google Scholar 

  2. Boland R, Boland AR de, Ritz E, Hasselbach W (1983) Effect of 1,25-dihydroxy-cholecalciferol on sarcoplasmic reticulum calcium transport in strontium-fed chicks. Calcif Tissue Int 35:190–194

    Article  PubMed  CAS  Google Scholar 

  3. Giuliani DL, Boland R (1984) Effects of vitamin D3 metabolites on calcium fluxes in intact chicken skeletal muscle and myoblasts cultured in vitro. Calcif Tissue Int 36:200–205

    Article  PubMed  CAS  Google Scholar 

  4. Boland AR de, Boland R (1985) In vitro cellular muscle calcium metabolism. Characterizaton of effects of 1,25-dihydroxy-vitamin D3 and 25-hydroxy-vitamin D3. Z Naturforsch 40c:102–108

    Google Scholar 

  5. Boland AR de, Boland R (1985) Suppression of 1,25-dihydroxy-vitamin D3-dependent calcium transport by protein synthesis inhibitors and changes in phospholipids in skeletal muscle. Biochim Biophys Acta 845:237–241

    Article  PubMed  Google Scholar 

  6. Boland R, Norman A, Ritz E, Hasselbach W (1985) Presence of a 1,25-dihydroxy-vitamin D3 receptor in chick skeletal muscle myoblasts. Biochem Biophys Res Commun 128:305–311

    Article  PubMed  CAS  Google Scholar 

  7. Simpson RU, Thomas GA, Arnold AS (1985) Identification of 1,25-dihydroxyvitamin D3 receptors and activities in muscle. J Biol Chem 260:8282–8291

    Google Scholar 

  8. Boland AR de, Boland R (1987) Rapid changes in skeletal muscle calcium uptake induced in vitro by 1,25-dihydroxy-vitamin D3 are suppressed by calcium channel blockers. Endocrinology 120:1858–1864

    Article  PubMed  Google Scholar 

  9. Vicenzi FF, Hinds TR (1980) Calmodulin and plasma membrane calcium transport. In: Cheung WY (ed) Calcium and cell function vol 1. Academic Press, New York, p 127

    Google Scholar 

  10. Michalak M, Famulski K, Carafoli E (1984) The Ca2+-pumping ATPase in skeletal muscle sarcolemma. Calmodulin dependence, regulation by cAMP-dependent phosphorylation and purification. J Biol Chem 259:15540–15547

    PubMed  CAS  Google Scholar 

  11. Tuana BS, Mac Lennan DH (1984) Calmidazolium and compound 48/80 inhibit calmodulin-dependent protein phosphorylation and ATP-dependent Ca2+ uptake but not Ca2+-ATPase activity in skeletal muscle sarcoplasmic reticulum. J Biol Chem 259:6979–6983

    PubMed  CAS  Google Scholar 

  12. Bikle DD, Munson S, Chafouleas G (1984) The role of calmodulin in 1,25-dihydroxy-vitamin D regulation of calcium transport across the intestinal brush border membrane. In: Bronner F, Peterlik M (eds) Epithelial calcium and phosphate transport: molecular and cellular aspects. Alan R. Liss, Inc, New York, p 193

    Google Scholar 

  13. Wasserman RH, Taylor AM (1973) Intestinal absorption of phosphate in the chick: effect of vitamin D3 and other parameters. J Nutr 103:586–599

    PubMed  CAS  Google Scholar 

  14. Paul J (1975) Cell and tissue culture. Churchill Livingstone, Great Britain

    Google Scholar 

  15. Bothe V, Schmidt-Gayk H, Armbruster FP, Mayer E (1984) Assay for the diagnosis of hyper- and hypovitaminosis. D Arztl Lab 30:151–156

    CAS  Google Scholar 

  16. Bouillon R, DeMoor P, Baggiolini EG, Uskokovic MR (1980) A radioimmunoassay for 1,25-dihydroxycholecalciferol. Clin Chem 26:562–567

    PubMed  CAS  Google Scholar 

  17. Boland AR de, Albornoz LE, Boland R (1983) The effect of cholecalciferol in vivo on proteins and lipids of skeletal muscle from rachitic chicks. Calcif Tissue Int 35:798–805

    Article  PubMed  Google Scholar 

  18. Schimel SD, Kent C, Bischoff R, y Vagelos PR (1973) Plasma membranes from cultured muscle cells: isolation procedures and separation of putative plasma membrane marker enzymes. Proc Natl Acad Sci USA 70:3195–3199

    Article  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  20. Wallace RW, Tallant EA, Cheung WY (1983) Assay of calmodulin by Ca2+-dependent phosphodiesterase. Methods Enzymol 102:39–47

    Article  PubMed  CAS  Google Scholar 

  21. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  22. Snedecor GW, Cochran WG (1967) Statistical methods. The Iowa State University Press, Ames, Iowa

    Google Scholar 

  23. Tillack TW, Boland R, Martonosi A (1974) Ultrastructure of developing sarcoplasmic reticulum. J Biol Chem 249:624–633

    PubMed  CAS  Google Scholar 

  24. Carafoli E, Inesi G, Rosen BP (1984) Calcium transport across biological membranes. In: Sigel H (ed) Metal ions in biological systems. Calcium and its role in biology, vol 17. Marcel Dekker, Inc, New York, p 129

    Google Scholar 

  25. Hirata M, Suematsu E, Koga T (1982) Calmodulin antagonists inhibit Ca2+ uptake of mitochondria of guinea pig peritoneal macrophages. Biochem Biophys Res Commun 105:1176–1181

    Article  PubMed  CAS  Google Scholar 

  26. Thomasset M, Molla A, Parkes A, Demaille JG (1981) Intestinal calmodulin and calcium-binding protein differ in their distribution and in the effect of vitamin D steroids on their concentration. FEBS Lett 127:13–16

    Article  PubMed  CAS  Google Scholar 

  27. Bauman VK, Valinietse MY, Babarykin DA (1984) Vitamin D3 and 1,25-dihydroxy-vitamin D3 stimulate the skeletal muscle-calcium mobilization in rachitic chicks. Arch Biochem Biophys 231:211–216

    Article  PubMed  CAS  Google Scholar 

  28. Hatase O, Tokuda M, Itano T, Matsui H, Doi A (1982) Purification and characterization of calmodulin from rat liver mitochondria. Biochem Biophys Res Commun 104:673–679

    Article  PubMed  CAS  Google Scholar 

  29. Means AR, Tash JS, Chafouleas JG (1982) Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol Rev 62:1–39

    PubMed  CAS  Google Scholar 

  30. Saito A, Seiler S, Chu A, Fleisher S (1984) Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol 99:875–885

    Article  PubMed  CAS  Google Scholar 

  31. Dedman JR, Potter JD, Means AR (1977) Biological cross-reactivity of rat testis phosphodiesterase activator protein and rabbit skeletal muscle troponin-c. J Biol Chem 252:2437–2440

    PubMed  CAS  Google Scholar 

  32. Drittanti L, Boland AR de, Boland R (1987) Changes in muscle lipid metabolism induced in vitro by 1,25-dihydroxy-vitamin D3. Biochim Biophys Acta 918:83–92

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boland, A.R., Massheimer, V. & Fernandez, L.M. 1,25 Dihydroxyvitamin D3 affects calmodulin distribution among subcellular fractions of skeletal muscle. Calcif Tissue Int 43, 370–375 (1988). https://doi.org/10.1007/BF02553281

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02553281

Key words

Navigation