Skip to main content
Log in

The analysis of ordered categorical data: An overview and a survey of recent developments

  • Published:
Test Aims and scope Submit manuscript

Abstract

This article review methodologies used for analyzing ordered categorical (ordinal) response variables. We begin by surveying models for data with a single ordinal response variable. We also survey recently proposed strategies for modeling ordinal response variables when the data have some type of clustering or when repeated measurement occurs at various occasions for each subject, such as in longitudinal studies. Primary models in that case includemarginal models andcluster-specific (conditional) models for which effects apply conditionally at the cluster level. Related discussion refers to multi-level and transitional models. The main emphasis is on maximum likelihood inference, although we indicate certain models (e.g., marginal models, multi-level models) for which this can be computationally difficult. The Bayesian approach has also received considerable attention for categorical data in the past decade, and we survey recent Bayesian approaches to modeling ordinal response variables. Alternative, non-model-based, approaches are also available for certain types of inference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agresti, A. (1980). Generalized odds ratios for ordinal data.Biometrics, 36:59–67.

    Article  MATH  MathSciNet  Google Scholar 

  • Agresti, A. (1981). Measures of nominal-ordinal association.Journal of the American Statistical Association, 76:524–529.

    Article  MATH  Google Scholar 

  • Agresti, A. (1983). Testing marginal homogeneity for ordinal categorical variables.Biometrics, 39:505–510.

    Article  Google Scholar 

  • Agresti, A. (1984).Analysis of Ordinal Categorical Data. Wiley, New York.

    MATH  Google Scholar 

  • Agresti, A. (1988). A model for agreement between ratings on an ordinal scale.Biometrics, 44:539–548.

    Article  MATH  Google Scholar 

  • Agresti, A. (1989a). A survey of models for repeated ordered categorical response data.Statistics in Medicine, 8:1209–1224.

    Google Scholar 

  • Agresti, A. (1989b). Tutorial on modelling ordered categorical response data.Psychological Bulletin, 105:290–301.

    Article  Google Scholar 

  • Agresti, A. (1992). Analysis of ordinal paired comparison data.Applied Statistics, 41:287–297.

    Article  MATH  Google Scholar 

  • Agresti, A. (1993). Computing conditional maximum likelihood estimates for generalized Rasch models using simple loglinear models with diagonal parameters.Scandinavian Journal of Statistics, 20:63–71.

    MATH  MathSciNet  Google Scholar 

  • Agresti, A. (2002).Categorical Data Analysis. Wiley, New Jersey, 2nd ed.

    MATH  Google Scholar 

  • Agresti, A. andChuang, C. (1989). Model-based Bayesian methods for estimating cell proportions in cross-classification tables having ordered categories.Computational Statistics and Data Analysis, 7:245–258.

    Article  MATH  MathSciNet  Google Scholar 

  • Agresti, A., Chuang, C., andKezouh, A. (1987). Order-restricted score parameters in association models for contingency tables.Journal of the American Statistical Association, 82:619–623.

    Article  MATH  MathSciNet  Google Scholar 

  • Agresti, A. andCoull, B. A. (1998). Order-restricted inference for monotone trend alternatives in contingency tables.Computational Statistics and Data Analysis, 28:139–155.

    Article  MATH  Google Scholar 

  • Agresti, A. andCoull, B. A. (2002). The analysis of contingency tables under inequality constraints.Journal of Statistical Planning and Inference, 107:45–73.

    Article  MATH  MathSciNet  Google Scholar 

  • Agresti, A. andHitchcock, D. (2004). Bayesian inference for categorical data analysis: A survey. Technical report, Department of Statistics, University of Florida.

  • Agresti, A. andLang, J. (1993). A proportional odds model with subject-specific effects for repeated categorical responses.Biometrika, 80:527–534.

    Article  MATH  MathSciNet  Google Scholar 

  • Agresti, A. andLiu, I. M. (1999). Modeling a categorical variable allowing arbitrarily many category choices.Biometrics, 55:936–943.

    Article  MATH  Google Scholar 

  • Agresti, A. andLiu, I. M. (2001). Strategies for modeling a categorical variable allowing multiple category choices.Sociological Methods & Research, 29:403–434.

    Article  MathSciNet  Google Scholar 

  • Agresti, A., Mehta, C. R., andPatel, N. R. (1990). Exact inference for contingency tables with ordered categories.Journal of the American Statistical Association, 85:453–458.

    Article  MATH  MathSciNet  Google Scholar 

  • Agresti, A. andNatarajan, R. (2001). Modeling clustered ordered categorical data: A survey.International Statistical Review, 69:345–371.

    MATH  Google Scholar 

  • Agresti, A. andYang, M. (1987). An empirical investigation of some effects of sparseness in contingency tables.Computational Statistics and Data Analysis, 5:9–21.

    Article  MATH  Google Scholar 

  • Aguilera, A. M., Escabias, M., andValderrama, M. J. (2005). Using principal components for estimating logistic regression with high dimensional multicollinear data.Computational Statistics and Data Analysis. To appear.

  • Albert, J. H. andChib, S. (1993). Bayesian analysis of binary and polychotomous response data.Journal of the American Statistical Association, 88:669–679.

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, C. J. andBöckenholt, U. (2000). Graphical regression models for polytomous variables.Psychometrika, 65:497–509.

    Article  MathSciNet  Google Scholar 

  • Anderson, J. A. (1984). Regression and ordered categorical variables (with discussion).Journal of the Royal Statistical Society. Series B, 46(1):1–30.

    MATH  MathSciNet  Google Scholar 

  • Anderson, J. A. andPhilips, P. R. (1981). Regression, discrimination and measurement models for ordered categorical variables.Applied Statistics, 30:22–31.

    Article  MATH  MathSciNet  Google Scholar 

  • Bartolucci, F. andForcina, A. (2002). Extended RC association models allowing for order restrictions and marginal modeling.Journal of the American Statistical Association, 97:1192–1199.

    Article  MATH  MathSciNet  Google Scholar 

  • Bartolucci, F., Forcina, A. andDardanoni, V. (2001). Positive quadrant dependence and marginal modelling in two-way tables with ordered margins.Journal of the American Statistical Association, 96:1497–1505.

    Article  MATH  MathSciNet  Google Scholar 

  • Bartolucci, F. andScaccia, L. (2004). Testing for positive association in contingency tables with fixed margins.Computational Statistics and Data Analysis, 47:195–210.

    Article  MathSciNet  MATH  Google Scholar 

  • Bastien, P., Esposito-Vinzi, V., andTenehaus, M. (2005). PLS generalised linear regression.Computational Statistics and Data Analysis, 48:17–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Becker, M. P. (1989). Models for the analysis of association in multivariate contingency tables.Journal of the American Statistical Association, 84:1014–1019.

    Article  Google Scholar 

  • Becker, M. P. (1990). Maximum likelihood estimation of the RC(M) association model.Applied Statistics, 39:152–167.

    Article  MATH  Google Scholar 

  • Becker, M. P. andAgresti, A. (1992). Loglinear modeling of pairwise interobserver agreement on a categorical scale.Statistics in Medicine, 11:101–114.

    Google Scholar 

  • Becker, M. P. andClogg, C. C. (1989). Analysis of sets of two-way contingency tables using association models.Journal of the American Statistical Association, 84:142–151.

    Article  MathSciNet  Google Scholar 

  • Bender, R. andBenner, A. (2000). Calculating ordinal regression models in SAS and S-PLUS.Biometrical Journal, 42:677–699.

    Article  MATH  Google Scholar 

  • Bender, R. andGrouven, U. (1998). Using binary logistic regression models for ordinal data with non-proportional odds.Journal of Clinical Epidemiology, 51:809–816.

    Article  Google Scholar 

  • Bergsma, W. P. (1997).Marginal Models for Categorical Data. Ph.D. thesis, Tilburg Univ, Netherlands.

    MATH  Google Scholar 

  • Bergsma, W. P. andRudas, T. (2002). Marginal models for categorical data.Annals of Statistics, 30:140–159.

    Article  MATH  MathSciNet  Google Scholar 

  • Bilder, C. R., Loughin, T. M. andNettleton, D.. (2000). Multiple marginal independence testing for pick any/c variables.Communications in Statistics. Simulation and Computation, 29:1285–1316.

    MATH  Google Scholar 

  • Biswas, A. andDas, K.. (2002). A Bayesian analysis of bivariate ordinal data: Wisconsin epidemiologic study of diabetic retinopathy revisited.Statistics in Medicine, 21:549–559.

    Article  Google Scholar 

  • Bock, R. D. andJones, L. V.. (1968).The Measurement and Prediction of Judgement and Choice. Holden-Day, San Francisco.

    Google Scholar 

  • Böckenholt, U. andDillon, W. R.. (1997). Modeling within-subject dependencies in ordinal paired comparison data.Psychometrika, 62:411–434.

    Article  MATH  Google Scholar 

  • Bonney, G. E.. (1986). Regressive logistic models for familial disease and other binary traits.Biometrics, 42:611–625.

    Article  Google Scholar 

  • Booth, J. G. andButler, R. W.. (1999). An importance sampling algorithm for exact conditional tests in log-linear models.Biometrika, 86:321–332.

    Article  MATH  MathSciNet  Google Scholar 

  • Booth, J. G. andHobert, J. P.. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm.Journal of the Royal Statistical Society. Series B, 61:265–285.

    Article  MATH  Google Scholar 

  • Bradlow, E. T. andZaslavsky, A. M.. (1999). A hierarchical latent variable model for ordinal data from a customer satisfaction survey with “no answer” responses.Journal of the American Statistical Association, 94:43–52.

    Article  Google Scholar 

  • Brant, R. (1990). Assessing proportionality in the proportional odds model for ordinal logistic regression.Biometrics, 46:1171–1178.

    Article  Google Scholar 

  • Breslow, N. andClayton, D. G. (1993). Approximate inference in generalized linear mixed models.Journal of the American Statistical Association, 88:9–25.

    Article  MATH  Google Scholar 

  • Brunner, E., Munzel, U. andPuri, M. L.. (1999). Rank-score tests in factorial designs with repeated measures.Journal of Multivariate Analysis, 70:286–317.

    Article  MATH  MathSciNet  Google Scholar 

  • Campbell, N. L., Young, L. J. andCapuano, G. A.. (1999). Analyzing over-dispersed count data in two-way cross-classification problems using generalized linear models.Journal of Statistical Computation and Simulation, 63:263–291.

    MATH  Google Scholar 

  • Chen, M.-H. andDey, D. K.. (2000). A unified Bayesian approach for analyzing correlated ordinal response data.Revista Brasileira de Probabilidade e Estatistica, 14:87–111.

    MATH  MathSciNet  Google Scholar 

  • Chen, M.-H. andShao, Q.-M.. (1999). Properties of prior and posterior distributions for multivariate categorical response data models.Journal of Multivariate Analysis, 71:277–296.

    Article  MATH  MathSciNet  Google Scholar 

  • Chib, S.. (2000).Generalized Linear Models: A Bayesian Perspective. Marcel Dekker, New York.

    Google Scholar 

  • Chib, S. andGreenberg, E. (1998). Analysis of multivariate probit models.Biometrika, 85:347–361.

    Article  MATH  Google Scholar 

  • Chipman, H. andHamada, M.. (1996). Bayesian analysis of ordered categorical data from industrial experiments.Technometrics, 38:1–10.

    Article  MATH  Google Scholar 

  • Chuang-Stein, C. andAgresti, A.. (1997). A review of tests for detecting a monotone dose-response relationship with ordinal responses data.Statistics in Medicine, 16:2599–2618.

    Article  Google Scholar 

  • Cohen, A. andSackrowitz, H. B.. (1992). Improved tests for comparing treatments against a control and other one-sided problems.Journal of the American Statistical Association, 87:1137–1144.

    Article  MATH  MathSciNet  Google Scholar 

  • Coull, B. A. andAgresti, A.. (2000). Random effects modeling of multiple binomial responses using the multivariate binomial logit-normal distribution.Biometrics, 56:73–80.

    Article  MATH  Google Scholar 

  • Cowles, M. K., Carlin, B. P., andConnett, J. E. (1996). Bayesian tobit modeling of longitudinal ordinal clinical trial compliance data with nonignorable missingness.Journal of the American Statistical Association, 91:86–98.

    Article  MATH  Google Scholar 

  • Cox, C. (1995). Location scale cumulative odds models for ordinal data: A generalized non-linear model approach.Statistics in Medicine, 14:1191–1203.

    Google Scholar 

  • Crouchley, R.. (1995). A random-effects model for ordered categorical data.Journal of the American Statistical Association, 90:489–498.

    Article  MATH  Google Scholar 

  • Dale, J. R. (1984). Local versus global association for bivariate ordered responses.Biometrika, 71:507–514.

    Article  MathSciNet  Google Scholar 

  • Dale, J. R. (1986). Global cross-ratio models for bivariate, discrete, ordered responses.Biometrics, 42:909–917.

    Article  Google Scholar 

  • Dong, J. andSimonoff, J. S. (1995). A geometric combination estimator ford-dimensional ordinal sparse contingency tables.Annals of Statistics, 23:1143–1159.

    MATH  MathSciNet  Google Scholar 

  • Douglas, R., Fienberg, S. E., Lee, M.-L. T., Sampson, A. R., andWhitaker, L. R. (1991). Positive dependence concepts for ordinal contingency tables. In H. W. Block, A. R. Sampson and T. H. Savits, eds.,Topics in Statistical Dependence, pp. 189–202. Institute of Mathematical Statistics (Hayward, CA).

    Google Scholar 

  • Ekholm, A., Jokinen, J., McDonald, J. W., andSmith, P. W. F. (2003). Joint regression and association modeling of longitudinal ordinal data.Biometrics, 59:795–803.

    Article  MathSciNet  MATH  Google Scholar 

  • Ekholm, A., Smith, P. W. F., andMcDonald, J. W.. (1995). Marginal regression analysis of a multivariate binary response.Biometrika, 82:847–854.

    Article  MATH  MathSciNet  Google Scholar 

  • Engel, B. (1998). A simple illustration of the failure of PQL, IRREML and APHL as approximate ML methods for mixed models for binary data.Biometrical Journal, 40:141–154.

    Article  MATH  MathSciNet  Google Scholar 

  • Escabias, M., Aguilera, A. M., andValderrama, M. J.. (2004a). Modelling environmental data by functional principal component logistic regression.Environmetrics, 16:95–107.

    Article  MathSciNet  Google Scholar 

  • Escabias, M., Aguilera, A. M. andValderrama, M. J. (2004b). Principal component estimation of functional logistic regression: Discussion of two different approaches.Journal of Nonparametric Statistics, 16:365–384.

    Article  MATH  MathSciNet  Google Scholar 

  • Evans, M., Gilula, Z. andGuttman, I.. (1993). Computational issues in the Bayesian analysis of categorical data: Log-linear and Goodman's RC Model.Statistica Sinica, 3:391–406.

    MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L. andTutz, G.. (1994). Dynamic stochastic models for time-dependent ordered paired comparison systems.Journal of the American Statistical Association, 89:1438–1449.

    Article  MATH  Google Scholar 

  • Fahrmeir, L. andTutz, G.. (2001).Multivariate Statistical Modelling Based on Generalized Linear Models. Springer, New York, 2nd ed.

    MATH  Google Scholar 

  • Farewell, V. T. (1982). A note on regression analysis of ordinal data with variability of classification.Biometrika, 69:533–538.

    Article  Google Scholar 

  • Fielding, A. (1999). Why use arbitrary points scores?: Ordered categories in models of educational progress.Journal of the Royal Statistical Society Series A, 162:303–328.

    Google Scholar 

  • Fienberg, S. E. andHolland, P. W.. (1972). On the choice of flattening constants for estimating multinomial probabilities.Journal of Multivariate Analysis, 2:127–134.

    Article  MathSciNet  Google Scholar 

  • Fienberg, S. E. andHolland, P. W.. (1973). Simultaneous estimation of multinomial cell probabilities.Journal of the American Statistical Association, 68:683–691.

    Article  MATH  MathSciNet  Google Scholar 

  • Fitzmaurice, G. M. andLaird, N. M.. (1993). A likelihood-based method for analysing longitudinal binary responses.Biometrika, 80:141–151.

    Article  MATH  Google Scholar 

  • Forster, J. J. (2001). Bayesian inference for square contingency tables. Unpublished manuscript.

  • Forster, J. J., McDonald, J. W., andSmith, P. W. F. (1996) Monte Carlo exact conditional tests for log-linear and logistic models.Journal of the Royal Statistical Society. Series B, 58:445–453.

    MATH  MathSciNet  Google Scholar 

  • Genter, F. C. andFarewell, V. T.. (1985). Goodness-of-link testing in ordinal regression models.Canadian Journal of Statistics, 13:37–44.

    MATH  Google Scholar 

  • Gilula, Z.. (1986). Grouping and association in contingency tables: An exploratory canonical correlation approach.Journal of the American Statistical Association, 81:773–779.

    Article  MATH  MathSciNet  Google Scholar 

  • Gilula, Z. andHaberman, S.J. (1988). The analysis of multivariate contingency tables by restricted canonical and restricted association models.Journal of the American Statistical Association, 83:760–771.

    Article  MATH  MathSciNet  Google Scholar 

  • Gilula, Z., Krieger, A. M. andRitov, Y. (1988). Ordinal association in contingency tables: Some interpretive aspects.Journal of the American Statistical Association, 83:540–545.

    Article  MATH  MathSciNet  Google Scholar 

  • Gilula, Z., andRitov, Y. (1990). Inferential ordinal correspondence analysis: Motivation, derivation and limitations.International Statistical Review, 58:99–108.

    MATH  Google Scholar 

  • Glonek, G. F. V. (1996). A class of regression models for multivariate categorical responses.Biometrika, 83:15–28.

    Article  MATH  MathSciNet  Google Scholar 

  • Glonek, G. F. V., andMcCullagh, P. (1995). Multivariate logistic models.Journal of the Royal Statistical Society. Series B, 57:533–546.

    MATH  Google Scholar 

  • Gonin, R., Lipsitz, S. R., Fitzmaurice, G. M., andMolenberghs, G. (2000). Regression modelling of weighted κ by using generalized estimating equations.Journal of the Royal Statistical Society. Series C: Applied Statistics, 49:1–18.

    Article  MATH  MathSciNet  Google Scholar 

  • Good, I. J. (1965).The Estimation of Probabilities: An Essay on Modern Bayesian Methods. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Goodman, L. A. (1979) Simple models for the analysis of association in cross-classifications having ordered categories.Journal of the American Statistical Association, 74:537–552.

    Article  MathSciNet  Google Scholar 

  • Goodman, L. A. (1981). Criteria for determining wether certain categories in a cross classification table should be combined, with special reference to occupational categories in an occupational mobility table.American Journal of Sociology, 87:612–650.

    Article  Google Scholar 

  • Goodman, L. A. (1983). The analysis of dependence in cross-classifications having ordered categories, using log-linear models for frequencies and log-linear models for odds.Biometrics, 39:149–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Goodman, L. A. (1985). The analysis of cross-classified data having ordered and/or unordered categories: Association models, correlation models, and asymmetry models for contingency tables with or without missing entries.Annals of Statistics, 13:10–69.

    MATH  MathSciNet  Google Scholar 

  • Goodman, L. A. (1986). Some useful extensions of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables.International Statistical Review, 54:243–309.

    MATH  MathSciNet  Google Scholar 

  • Goodman, L. A. (1996). A single general method for the analysis of cross-classified data: reconciliation and synthesis of some methods of pearson, yule, and fisher, and also some methods of correspondence analysis and association analysis.Journal of the American Statistical Association, 91:408–428.

    Article  MATH  MathSciNet  Google Scholar 

  • Goodman, L. A. (2004). Three different ways to view cross-classified categorical data: Rasch-type models, log-linear models, and latent-class models. Technical report.

  • Goodman, L. A., andKruskal, W. H. (1954). Measures of association for cross classifications.Journal of the American Statistical Association, 49:732–764.

    Article  MATH  Google Scholar 

  • Gosman-Hedström, G., andSvensson, E. (2000). Parallel reliability of the Functional Independence Measure and the Barthel ADL index.Disability and Rehabilitation, 22:702–715.

    Article  Google Scholar 

  • Grizzle, J. E., Starmer, C. F., andKoch, G. G. (1969). Analysis of categorical data by linear models.Biometrics, 25:489–504.

    Article  MathSciNet  MATH  Google Scholar 

  • Gustafson, P. (2003).Measurement Error and Misclassification in Statistics and Epidemiology: Impacts and Bayesian Adjustments, vol. 13 ofInterdisciplinary Statistics. Chapman and Hall/CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Haberman, S. J. (1974). Log-linear models for frequency tables with ordered classifications.Biometrics, 36:589–600.

    Article  MathSciNet  Google Scholar 

  • Haberman, S. J. (1981). Tests for independence in two-way contingency tables based on canonical correlation and on linear-by-linear interaction.Annals of Statistics, 9:1178–1186.

    MATH  MathSciNet  Google Scholar 

  • Haberman, S. J. (1995). Computation of maximum likelihood estimates in association models.Journal of the American Statistical Association, 90:1438–1446.

    Article  MATH  MathSciNet  Google Scholar 

  • Hand, D. J. (1996). Statistics and the theory of measurement.Journal of the Royal Statistical Society. Series A, 159:445–492.

    Google Scholar 

  • Hartzel, J., Agresti, A., andCaffo, B. (2001a). Multinomial logit random effects models.Statistical Modelling, 1:81–102.

    Article  MATH  Google Scholar 

  • Hartzel, J., Liu, I.-M., andAgresti, A. (2001b). Describing heterogeneous effects in stratified ordinal contingency tables, with application to multi-center clinical trials.Computational Statistics and Data Analysis, 35:429–449.

    Article  MATH  MathSciNet  Google Scholar 

  • Harville, D. A., andMee, R. W. (1984). A mixed-model procedure for analyzing ordered categorical data.Biometrics, 40:393–408.

    Article  MATH  MathSciNet  Google Scholar 

  • Hastie, T., andTibshirani, R. (1987). Non-parametric logistic and proportional odds regression.Applied Statistics, 26:260–276.

    Article  Google Scholar 

  • Hastie, T., andTibshirani, R. (1990).Generalized Additive Models. Chapman and Hall, London.

    MATH  Google Scholar 

  • Hastie, T., andTibshirani, R. (1993). Varying-coefficient models.Journal of the Royal Statistical Society. Series B, 55:757–796.

    MATH  MathSciNet  Google Scholar 

  • Hastie, T., Tibshirani, R., andFriedman, J. H. (2001).The Elements of Statistical Learning. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Heagerty, P. J., andZeger, S. L. (1996). Marginal regression models for clustered ordinal measurements.Journal of the American Statistical Association, 91:1024–1036.

    Article  MATH  Google Scholar 

  • Hedeker, D., andGibbons, R. D. (1994). A random-effects ordinal regression model for multilevel analysis.Biometrics, 50:933–944.

    Article  MATH  Google Scholar 

  • Hedeker, D., andGibbons, R.D. (1996). MIXOR: A computer program for mixed-effects ordinal regression analysis.Computer Methods and Programs in Biomedicine, 49:157–176.

    Article  Google Scholar 

  • Hedeker, D., andMermelstein, R. J. (2000). Analysis of longitudinal substance use outcomes using ordinal random-effects regression models.Addiction, 95:S381-S394.

    Article  Google Scholar 

  • Heeren, T., andD'Agostino, R. (1987). Robustness of the two independent samples t-test when applied to ordinal scaled data.Statistics in Medicine, 6:79–90.

    Google Scholar 

  • Heumann, C. (1997).Likelihoodbasierte Marginale Regressionsmodelle fur Korrelierte Kategoriale Daten. Ph.D. thesis, Ludwig-Maximilians-Universitat. Munchen.

    Google Scholar 

  • Hilton, J. F., andMehta, C. R. (1993). Power and sample size calculations for exact conditional tests with ordered categorical data.Biometrics, 49:609–616.

    Article  MATH  Google Scholar 

  • Hjort, N. L., andJones, M. C. (1996). Locally parametric nonparametric density estimation.Annals of Statistics, 24:1619–1647.

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, G.-H., Bandeen-Roche, K., andRubin, G. S. (2002). Building marginal models for multiple ordinal measurements.Journal of the Royal Statistical Society. Series C: Applied Statistics, 51:37–57.

    Article  MathSciNet  MATH  Google Scholar 

  • Ishwaran, H. (2000). Univariate and multirater ordinal cumulative link regression with covariate specific cutpoints.The Canadian Journal of Statistics, 28:715–730.

    MATH  MathSciNet  Google Scholar 

  • Ishwaran, H., andGatsonis, C. A. (2000). A general class of hierarchical ordinal regression models with applications to correlated ROC analysis.The Canadian Journal of Statistics, 28:731–750.

    MATH  MathSciNet  Google Scholar 

  • Jaffrézic, F., Robert-Granié, C. R., andFoulley, J.-L. (1999). A quasi-score approach to the analysis of ordered categorical data via a mixed heteroskedastic threshold model.Genetics Selection Evolution, 31:301–318.

    Google Scholar 

  • James, G. M. (2002). Generalized linear models with functional predictors.Journal of Royal Statistical Society. Series B, 64:411–432.

    Article  MATH  Google Scholar 

  • Johnson, V. E. (1996). On Bayesian analysis of multirater ordinal data: An application to automated essay grading.Journal of the American Statistical Association, 91:42–51.

    Article  MATH  Google Scholar 

  • Johnson, V. E., andAlbert, J. H. (1999).Ordinal Data Modeling. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Kateri, M., andIliopoulos, G. (2003). On collapsing categories in two-way contingency tables.Statistics, 37:443–455.

    Article  MATH  MathSciNet  Google Scholar 

  • Kateri, M., Nicolaou, A., andNtzoufras, I. (2005). Bayesian inference for the RC(m) association model.Journal of Computational and Graphical Statistics, 14:116–138.

    Article  MathSciNet  Google Scholar 

  • Kateri, M., andPapaioannou, T. (1994).f-divergence association models.International Journal of Mathematical and Statistical Science, 3:179–203.

    MATH  MathSciNet  Google Scholar 

  • Kateri, M., andPapaioannou, T. (1997). Asymmetry models for contingency tables.Journal of the American Statistical Association, 92:1124–1131.

    Article  MATH  MathSciNet  Google Scholar 

  • Kauermann, G. (2000). Modeling longitudinal data with ordinal response by varying coefficients.Biometrics, 56:692–698.

    Article  MATH  Google Scholar 

  • Kauermann, G., andTutz, G. (2000). Local likelihood estimation in varying coefficient models including additive bias correction.Journal of Nonparametric Statistics, 12:343–371.

    MATH  MathSciNet  Google Scholar 

  • Kauermann, G., andTutz, G. (2003). Semi- and nonparametric modeling of ordinal data.Journal of Computational and Graphical Statistics, 12:176–196.

    Article  MathSciNet  Google Scholar 

  • Kenward, M. G., Lesaffre, E., andMolenberghs, G. (1994). An application of maximum likelihood and generalized estimating equations to the analysis of ordinal data from a longitudinal study with cases missing at random.Biometrics, 50:945–953.

    Article  MATH  Google Scholar 

  • Kim, D., andAgresti, A. (1997). Nearly exact tests of conditional independence and marginal homogeneity for sparse contingency tables.Computational Statistics and Data Analysis, 24:89–104.

    Article  MATH  MathSciNet  Google Scholar 

  • Kim, J.-H. (2003). Assessing practical significance of the proportional odds assumption.Statistics & Probability Letters, 65:233–239.

    Article  MATH  MathSciNet  Google Scholar 

  • Koch, G. G., Landis, J. R., Freeman, J. L., Freeman, J. D. H., andLehnen, R. G. (1977). A general methodology for the analysis of experiments with repeated measurements of categorical data.Biometrics, 33:133–158.

    Article  MATH  Google Scholar 

  • Kosorok, M. R., andChao, W.-H. (1996). The analysis of longitudinal ordinal response data in continuous time.Journal of the American Statistical Association, 91:807–817.

    Article  MATH  MathSciNet  Google Scholar 

  • Landis, J. R., Heyman, E. R., andKoch, G. G. (1978). Average partial association in three-way contingency tables: A review and discussion of alternative tests.International Statistical Review, 46:237–254.

    Article  MATH  MathSciNet  Google Scholar 

  • Landis, J. R., Sharp, T. J., Kuritz, S. J., andKoch, G. G. (1998). Mantel-haenszel methods. InEncyclopedia of Biostatistics, pp. 2378–2691. Wiley, Chichester, UK.

    Google Scholar 

  • Lang, J. B. (1996). Maximum likelihood methods for a general class of log-linear models.Annals of Statistics, 24:726–752.

    Article  MATH  MathSciNet  Google Scholar 

  • Lang, J. B. (1999). Bayesian ordinal and binary regression models with a parametric family of mixture links.Computational Statistics and Data Analysis, 31:59–87.

    Article  MATH  MathSciNet  Google Scholar 

  • Lang, J. B. (2004). Multinomial-Poisson homogeneous models for contingency tables.Annals of Statistics, 32:340–383.

    Article  MATH  MathSciNet  Google Scholar 

  • Lang, J. B. andAgresti, A. (1994). Simultaneously modeling joint and marginal distributions of multivariate categorical responses.Journal of the American Statistical Association, 89:625–632.

    Article  MATH  Google Scholar 

  • Lang, J. B., McDonald, J. W. andSmith, P. W. F. (1997). Association marginal modeling of multivariate polytomous responses: A maximum likelihood approach for large, sparse tables.Journal of the American Statistical Association, 94:1161–1171.

    Article  MathSciNet  Google Scholar 

  • Lawal, H. B. (2004). Review of non-independence, asymmetry, skewsymmetry and point-symmetry models in the analysis of social mobility data.Quality & Quantity, 38:259–289.

    Article  Google Scholar 

  • Lee, M.-K., Song, H.-H., Kang, S.-H., andAhn, C. W. (2002). The determination of sample sizes in the comparison of two multinomial proportions from ordered categories.Biometrical Journal, 44:395–409.

    Article  MathSciNet  Google Scholar 

  • Leonard, T. (1973). A Bayesian method for histograms.Biometrika, 60:297–308.

    MATH  MathSciNet  Google Scholar 

  • Lindsey, J. K. (1999).Models for Repeated Measurements. Oxford University Press, New York, 2nd ed.

    Google Scholar 

  • Lipsitz, S. R. (1992). Methods for estimating the parameters of a linear model for ordered categorical data.Biometrics, 48:271–281.

    Article  Google Scholar 

  • Lipsitz, S. R. andFitzmaurice, G. M. (1996). The score test for independence inr×c contingency tables with missing data.Biometrics, 52:751–762.

    Article  MATH  Google Scholar 

  • Lipsitz, S. R., Fitzmaurice, G. M., andMolenberghs, G. (1996). Goodness-of-fit tests for ordinal response regression models.Applied Statistics, 45:175–190.

    Article  MATH  MathSciNet  Google Scholar 

  • Lipsitz, S. R., Kim, K., andZhao, L. (1994). Analysis of repeated categorical data using generalized estimating equations.Statistics in Medicine, 13:1149–1163.

    Google Scholar 

  • Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies.Journal of the American Statistical Association, 90:1112–1121.

    Article  MATH  MathSciNet  Google Scholar 

  • Little, R. J. A., andRubin, D. B. (1987).Statistical Analysis with Missing Data. Wiley, New York.

    MATH  Google Scholar 

  • Liu, I. (2003). Describing ordinal odds ratios for stratifiedr×c tables.Biometrical Journal, 45:730–750.

    Article  Google Scholar 

  • Liu, I.-M., andAgresti, A. (1996). Mantel-Haenszel-type inference for cumulative odds ratio.Biometrics, 52:1222–1234.

    Article  MathSciNet  Google Scholar 

  • Liu, Q., andPierce, D. A. (1994). A note on Gauss-Hermite quadrature.Biometrika, 81:624–629.

    MATH  MathSciNet  Google Scholar 

  • Loader, C. R. (1996). Local likelihood density estimation.Annals of Statistics, 24:1602–1618.

    Article  MATH  MathSciNet  Google Scholar 

  • Lui, K.-J., Zhou, X.-H., andLin, C.-D. (2004). Testing equality between two diagnostic procedures in paired-sample ordinal data.Biometrical Journal, 46:642–652.

    Article  MathSciNet  Google Scholar 

  • Mantel, N., andHaenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease.Journal of the National Cancer Institute, 22:719–748.

    Google Scholar 

  • Mark, S. D., andGail, M. H. (1994). A comparison of likelihood-based and marginal estimating equation methods for analysing repeated ordered categorical responses with missing data.Statistics in Medicine, 13:479–493.

    Google Scholar 

  • McCullagh, P. (1978). A class of parametric models for the analysis of square contingency tables with ordered categories.Biometrika, 65:413–418.

    Article  MATH  Google Scholar 

  • McCullagh, P. (1980). Regression models for ordinal data (with discussion).Journal of the Royal Statistical Society, Series B, 42:109–142.

    MATH  MathSciNet  Google Scholar 

  • Miller, M. E., Davis, C. S., andLandis, J. R. (1993). The analysis of longitudinal polytomous data: Generalized estimating equations and connections with weighted least square.Biometrics, 49:1033–1044.

    Article  MATH  Google Scholar 

  • Miller, M. E., Ten Have, T. R., Reboussin, B. A., Lohman, K. K., andRejeski, W. J. (2001). A marginal model for analyzing discrete outcomes from longitudinal survey with outcomes subject to multiple-cause nonresponse.Journal of the American Statistical Association, 96:844–857.

    Article  MATH  MathSciNet  Google Scholar 

  • Molenberghs, G., Kenward, M. G., andLesaffre, E. (1997). The analysis of longitudinal ordinal data with nonrandom drop-out.Biometrika, 84:33–44.

    Article  MATH  Google Scholar 

  • Molenberghs, G., andLesaffre, E. (1994). Marginal modeling of correlated ordinal data using a multivariate Plackett distribution.Journal of the American Statistical Association, 89:633–644.

    Article  MATH  Google Scholar 

  • Mwalili, S. M., Lesaffre, E., andDeclerck, D. (2005). A Bayesian ordinal logistic regression model to correct for interobserver measurement error in a geographical oral health study.Applied Statistics, 54(1):1–17.

    MathSciNet  Google Scholar 

  • Oh, M. (1995). On maximum likelihood estimation of cell probabilities in 2×k contingency tables under negative dependence restrictions with various sampling schemes.Communications in Statistics. Theory and Methods, 24:2127–2143.

    MATH  MathSciNet  Google Scholar 

  • Ohman-Strickland, P. A., andLu, S.-E. (2003). Estimates, power and sample size calculations for two-sample ordinal outcomes under before-after study designs.Statistics in Medicine, 22:1807–1818.

    Article  Google Scholar 

  • Pearson, K. andHeron, D. (1913). On theories of association.Biometrika, 9:159–315.

    Google Scholar 

  • Peterson, B., andHarrell, F. E. (1990). Partial proportional odds models for ordinal response variables.Applied Statistics, 39:205–217.

    Article  MATH  Google Scholar 

  • Pinheiro, J. C. andBates, D. M. (1995). Approximations to the log-likelihood function in the non-linear mixed-effects model.Journal of Computational and Graphical Statistics, 4:12–35.

    Article  Google Scholar 

  • Plackett, R. L. (1965). A class of bivariate distributions.Journal of the American Statistical Association, 60:516–522.

    Article  MathSciNet  Google Scholar 

  • Qiu, Z., Song, P. X.-K., andTan, M. (2002). Bayesian hierarchical models for multi-level repeated ordinal data using WinBUGS.Journal of Biopharmaceutical Statistics, 12:121–135.

    Article  Google Scholar 

  • Qu, Y.S., Piedmonte, M. R., andMedendorp, S. V. (1995). Latent variable models for clustered ordinal data.Biometrics, 51:268–275.

    Article  MATH  Google Scholar 

  • Qu, Y. S. andTan, M. (1998). Analysis of clustered ordinal data with subclusters via a Bayesian hierarchical model.Communications in Statistics. Theory and Methods, 27:1461–1476.

    MATH  Google Scholar 

  • Rabbee, N., Coull, B. A., Mehta, C., Patel, N., andSenchaudhuri, P. (2003). Power and sample size for ordered categorical data.Statistical Methods in Medical Research, 12:73–84.

    Article  MathSciNet  MATH  Google Scholar 

  • Ritov, Y. andGilula, Z. (1991). The order-restricted RC model for ordered contingency tables: Estimation and testing for fit.Annals of Statistics, 19:2090–2101.

    MATH  MathSciNet  Google Scholar 

  • Rogel, A., Boalle, P. Y., andMary, J. Y. (1998). Global and partial agreement among several observers.Statistics in Medicine, 17:489–501.

    Article  Google Scholar 

  • Rom, D. andSarkar, S. K. (1992). Grouping and association in contingency tables: An exploratory canonical correlation approach.Journal of Statistical Planning and Inference, 33:205–212.

    Article  MATH  MathSciNet  Google Scholar 

  • Rossi, P. E., Gilula, Z., andAllenby, G. M. (2001). Overcoming scale usage heterogeneity: A Bayesian hierarchical approach.Journal of the American Statistical Association, 96:20–31.

    Article  MathSciNet  Google Scholar 

  • Rossini, A. J. andTsiatis, A. A. (1996). A semiparametric proportional odds regression model for the analysis of current status data.Journal of the American Statistical Association, 91:713–721.

    Article  MATH  MathSciNet  Google Scholar 

  • Sedransk, J., Monahan, J., andChiu, H. Y. (1985). Bayesian estimation of finite population parameters in categorical data models incorporating order.Journal of the Royal Statistical Society. Series B, 47:519–527.

    MathSciNet  Google Scholar 

  • Simon, G. (1974). Alternative analyses for the singly-ordered contingency table.Journal of the American Statistical Association, 69:971–976.

    Article  MATH  MathSciNet  Google Scholar 

  • Simonoff, J. S. (1987). Probability estimation via smoothing in sparse contingency tables with ordered categories.Statistics & Probability Letters, 5:55–63.

    Article  MATH  MathSciNet  Google Scholar 

  • Simonoff, J. S. (1996).Smoothing Methods in Statistics. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Simonoff, J. S. (1998). Three sides of smoothing: Categorical data smoothing, nonparametric regression, and density estimation.International Statistical Review, 66:137–156.

    MATH  Google Scholar 

  • Simonoff, J. S. andTutz, G. (2001). Smoothing methods for discrete data. In M. G. Schimek, ed.Smoothing and Regression. Approaches, Computation and Application, pp. 193–228. John Wiley and Sons, New York.

    Google Scholar 

  • Snell, E. J. (1964). A scaling procedure for ordered categorical data.Biometrics, 20:592–607.

    Article  MATH  MathSciNet  Google Scholar 

  • Sonn, U., andSvensson, E. (1997). Measures of individual and group changes in ordered categorical data: Application to the ADL Staircase.Scandinavian Journal of Rehabilitation Medicine, 29:233–242.

    Google Scholar 

  • Spiessens, B., Lesaffre, E., Verbeke, G., andKim, K. M. (2002). Group sequential methods for an ordinal logistic random-effects model under misspecification.Biometrics, 58:569–575.

    Article  MathSciNet  Google Scholar 

  • Spitzer, R. L., Cohen, J., Fleiss, J. L., andEndicott, J. (1967). Quantification of agreement in psychiatric diagnosis.Archives of General Psychiatry, 17:83–87.

    Google Scholar 

  • Stokes, M. E., Davis, C. S., andKoch, G. G. (2000).Categorical Data Analysis Using the SAS system. SAS Institute, Cary, NC, 2nd ed.

    Google Scholar 

  • Sutradhar, B. C. (2003). An overview on regression models for discrete longitudinal responses.Statistical Science, 18:377–393.

    Article  MATH  MathSciNet  Google Scholar 

  • Svensson, E. (1993).Analysis of systematic and random differences between paired ordinal categorical data. Ph.D. thesis, Department of Statistics, Göteborg University. Publications 21.

  • Svensson, E. (1997). A coefficient of agreement adjusted for bias in paired ordered categorical data.Biometrical Journal, 39:643–657.

    MATH  Google Scholar 

  • Svensson, E. (1998a). Ordinal invariant measures for individual and group changes in ordered categorical data.Statistics in Medicine, 17:2923–2936.

    Article  Google Scholar 

  • Svensson, E. (1998b). Teaching biostatistics to clinical research groups. In S.K.L.W.K.T. Pereira-Mendoza, L. Wong and W. K. Wong, eds.,Proceedings of the Fifth International Conference on Teaching Statistics, pp. 289–294. International Statistical Institute, Singapore.

    Google Scholar 

  • Svensson, E. (2000a). Comparison of the quality of assessments using continuous and discrete ordinal rating scales.Biometrical Journal, 42:417–434.

    Article  MATH  Google Scholar 

  • Svensson, E. (2000b). Concordance between ratings using different scales for the same variable.Statistics in Medicine, 19:3483–3496.

    Article  Google Scholar 

  • Svensson, E. (2001). Important considerations for optimal communication between statisticians and medical researchers in consulting, teaching and collaborative research-with a focus on the analysis of ordered categorical data. In C. Batanero, ed.,Training Researchers in the Use of Statistics, pp. 23–35. International Association for Statistical Education, Granada.

    Google Scholar 

  • Svensson, E. andHolm, S. (1994). Separation of systematic and random differences in ordinal rating scales.Statistics in Medicine, 13:2437–2453.

    Google Scholar 

  • Svensson, E. andStarmark, J. E. (2002). Evaluation of individual and group changes in social outcome after aneurysmal subarachnoid haemorrhage: A long-term follow-up study.Journal of Rehabilitation Medicine, 34:251–259.

    Article  Google Scholar 

  • Tan, M., Qu, Y. S., Mascha, E., andSchubert, A. (1999). A Bayesian hierarchical model for multi-level repeated ordinal data: analysis of oral practice examinations in a large anaesthesiology training program.Statistics in Medicine, 18:1983–1992.

    Article  Google Scholar 

  • Ten Have, T. R. (1996). A mixed effects model for multivariate ordinal response data including correlated discrete failure times with ordinal responses.Biometrics, 52:473–491.

    Article  MATH  MathSciNet  Google Scholar 

  • Ten Have, T. R., Miller, M. E., Reboussin, B. A., andJames, M. M. (2000). Mixed effects logistic regression models for longitudinal ordinal functional response data with multiple cause drop-out from the longitudinal study of aging.Biometrics, 56:279–287.

    Article  MATH  Google Scholar 

  • Thompson, R. andBaker, R. J. (1981). Composite link functions in generalized linear models.Applied Statistics, 30:125–131.

    Article  MATH  MathSciNet  Google Scholar 

  • Titterington, D. M. andBowman, A. W. (1985). A comparative study of smoothing procedures for ordered categorical data.Journal of Statistical Computation and Simulation, 21:291–312.

    MathSciNet  Google Scholar 

  • Toledano, A. Y. andGatsonis, C. (1996). Ordinal regression methodology for ROC curves derived from correlated data.Statistics in Medicine, 15:1807–1826.

    Article  Google Scholar 

  • Toledano, A. Y. andGatsonis, C. (1999). Generalized estimating equations for ordinal categorical data: arbitrary patterns of missing responses and missingness in a key covariate.Biometrics, 55:488–496.

    Article  MATH  MathSciNet  Google Scholar 

  • Tosteson, A. N. andBegg, C. B. (1988). A general regression methodology for ROC curve estimation.Medical Decision Making, 8:204–215.

    Article  Google Scholar 

  • Tutz, G. (1990). Sequential item response models with an ordered response.British Journal of Mathematical and Statistical Psychology, 43:39–55.

    MATH  MathSciNet  Google Scholar 

  • Tutz, G. (1991). Sequential models in categorical regression.Computational Statistics and Data Analysis, 11:275–295.

    Article  MATH  MathSciNet  Google Scholar 

  • Tutz, G. (2003). Generalized semiparametrically structured ordinal models.Biometrics, 59:263–273.

    Article  MathSciNet  Google Scholar 

  • Tutz, G. andHennevogl, W. (1996). Random effects in ordinal regression models.Computational Statistics and Data Analysis, 22:537–557.

    Article  MATH  Google Scholar 

  • Uebersax, J. S. (1999). Probit latent class analysis with dichotomous or ordered category measures: Conditional independence/dependence models.Applied Psychological Measurement, 23:283–297.

    Article  Google Scholar 

  • Uebersax, J. S. andGrove, W. M. (1993). A latent trait finite mixture model for the analysis of rating agreement.Biometrics, 49:823–835.

    Article  MathSciNet  Google Scholar 

  • Vermunt, J. andHagenaars, J. A. (2004). Ordinal longitudinal data analysis. In R. C. Hauspie, N. Cameron, and L. Molinari, eds.,Methods in Human Growth Research, pp. 374–393. Cambridge University Press, Cambridge.

    Google Scholar 

  • Von Eye, A. andSpiel, C. (1996). Standard and non-standard loglinear symmetry models for measuring change in categorical variables.American Statistician, 50:300–305.

    Article  Google Scholar 

  • Wahrendorf, J. (1980). Inference in contingency tables with ordered categories using Plackett's coefficient of association for bivariate distributions.Biometrika, 67:15–21.

    Article  MATH  MathSciNet  Google Scholar 

  • Walker, S. H. andDuncan, D. B. (1967). Estimation of the probability of an event as a function of several independent variables.Biometrika, 54:167–179.

    MATH  MathSciNet  Google Scholar 

  • Wang, Y. (1996). A likelihood ratio test against stochastic ordering in several populations.Journal of the American Statistical Association, 91:1676–1683.

    Article  MATH  MathSciNet  Google Scholar 

  • Webb, E. L. andForster, J. J. (2004). Bayesian model determination for multivariate ordinal and binary data. Technical report.

  • Wermuth, N. andCox, D. R. (1998). On the application of conditional independence to ordinal data.International Statistical Review, 66:181–199.

    MATH  Google Scholar 

  • Whitehead, J. (1993). Sample size calculations for ordered categorical data.Statistics in Medicine, 12:2257–2271.

    Google Scholar 

  • Williams, O. D. andGrizzle, J. E. (1972). Analysis of contingency tables having ordered response categories.Journal of the American Statistical Association, 67:55–63.

    Article  Google Scholar 

  • Williamson, J. M. andKim, K. (1996). A global odds ratio regression model for bivariate ordered categorical data from opthalmologic studies.Statistics in Medicine, 15:1507–1518.

    Article  Google Scholar 

  • Williamson, J. M., Kim, K., andLipsitz, S. R. (1995). Analyzing bivariate ordinal data using a global odds ratio.Journal of the American Statistical Association, 90:1432–1437.

    Article  MATH  MathSciNet  Google Scholar 

  • Williamson, J. M. andLee, M.-L. T. (1996). A GEE regression model for the association between an ordinal and a nominal variable.Communications in Statistics. Theory and Methods, 25:1887–1901.

    MATH  Google Scholar 

  • Xie, M., Simpson, D. G., andCarroll, R. J. (2000). Random effects in censored ordinal regression: Latent structure and Bayesian approach.Biometrics, 56:376–383.

    Article  MATH  MathSciNet  Google Scholar 

  • Yee, T. W. andWild, C. J. (1996). Vector generalized additive models.Journal of the Royal Statistical Society. Series B, 58:481–493.

    MATH  MathSciNet  Google Scholar 

  • Young, L. J., Campbell, N. L., andCapuano, G. A. (1999). Analysis of overdispersed count data from single-factor experiments: A comparative study.Journal of Agricultural, Biological, and Environmental Statistics, 4:258–275.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Agresti.

Additional information

This work was partially supported by a grant for A. Agresti from NSF and by a research study leave grant from Victoria University for I. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, I., Agresti, A. The analysis of ordered categorical data: An overview and a survey of recent developments. Test 14, 1–73 (2005). https://doi.org/10.1007/BF02595397

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595397

Key Words

AMS subject classification

Navigation