Skip to main content
Log in

Decreased cultured endothelial cell proliferation in high glucose medium is reversed by antioxidants: New insights on the pathophysiological mechanisms of diabetic vascular complications

  • Rapid Communications In Cell Biology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Exposure to hyperglycemia slows the rate of proliferation of cultured human endothelial cells. Recently, it has been reported that glucose may autoxidize generating free radicals which have been hypothesized to delay cell replication time.

To test whether oxidative stress has an effect on delaying cell replication time in hyperglycemic conditions, human endothelial cells cultured from umbilical veins were incubated in 5 or 20 mM glucose, either alone or in the presence of one of three different antioxidants: superoxide dismutase (SOD), catalase and glutathione (GSH). Cells grown in medium with 5 mM glucose, with or without antioxidants, yielded similar population doubling times and cell cycle phase distributions. Significantly lower growth parameters were observed in cells grown in medium with 20 mM glucose, without antioxidants. The presence of the antioxidant reverted them to almost normal growth.

These data show that high glucose levels may delay endothelial cells replication time through the generation of free radicals, suggesting a possible pathophysiological linkage between the high levels of glucose and the development of microvascular complications of diabetes, possibly suggesting a new therapeutic approach to prevent such complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreoli, S. P.; McAteer, J. A. Reactive oxygen molecule-mediated injury in endothelial and renal tubular epithelial cells in vitro. Kidney Intern 38:785–794; 1990.

    CAS  Google Scholar 

  2. Baish, H.; Gohde, W.; Linden, W. Analysis of PCP-date to determine the fractions of cell in the various phase of cell cycle. Radiat. Environ. Biophys. 12:31–42; 1975.

    Article  Google Scholar 

  3. Baynes, J. W. Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412; 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Bellomo, G.; Mirabelli, F.; Di Monte, D., et al. Formation and reduction of glutathione-protein mixed disulfide during oxidative stress. A study with isolated hepatocytes and menadione (2-methyl-1,4-napthoquinone). Biochem. Pharmacol. 36:1313–1319; 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Borg, L. A. H.; Eriksson, V. J. Protection by free radical scavenging enzymes against glucose-induced embryonic malformations in vitro. Diabetologia 34:325–331; 1991.

    Article  PubMed  Google Scholar 

  6. CellFIT Software User’s Guide, May 1990, Becton Dickinson.

  7. Ceriello, A.; Giugliano, D.; Quatraro, A., et al. Metabolic control may influence the increased superoxide generation in diabetic serum. Diabetic Medicine 8:540–542; 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Di Monte, D.; Ross, D.; Bellomo, G., et al. Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes. Arch. Biochem. Biophys. 235:334–342; 1984.

    Article  PubMed  Google Scholar 

  9. Di Monte, D.; Bellomo, G.; Thor, H., et al. Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in intracellular Ca2+ homeostasis. Arch. Biochem. Biophys. 235:343–350; 1984.

    Article  PubMed  Google Scholar 

  10. Fridovich, I. The biology of oxygen radicals. The superoxide radical is an agent of oxygen toxicity; superoxide dismutase provide an important defense. Science 201:875–880; 1978.

    Article  PubMed  CAS  Google Scholar 

  11. Halliwell, B.; Gutteridge, J. M. C. Lipid peroxidation, oxygen radicals, cell damage and antioxidants therapy. Lancet 1:1396–1397; 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Hardenschild, C. C. Biology of endothelial cells. In: Jaffe, E. A., ed. Boston: Nijhoff; 1984:129–140.

    Google Scholar 

  13. Hunt, J. V.; Dean, R. T.; Wolff, S. P. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and aging. Biochem. J. 256:205–212; 1988.

    PubMed  CAS  Google Scholar 

  14. Jones, D. P.; Eklow, L.; Thor, H., et al. Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously-generated H2O2. Arch. Biochem. Biophys. 210:505–513; 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Lorenzi, M.; Cagliero, E.; Toledo, S. Glucose toxicity for human endothelial cells in culture. Diabetes 34:621–627; 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Lorenzi, M.; Nordberg, J. A.; Toledo, S. High glucose prolongs cell cycle traversal of cultured human endothelial cells. Diabetes 36:1261–1267; 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Lorenzi, M.; Cagliero, E.; Markey, B., et al. Interaction of human endothelial cells with elevated glucose concentrations and native and glycosylated low density lipoproteins. Diabetologia. 26:218–222; 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Mello Filho, A. C.; Hoffman, M. E.; Menghini, R. Cell killing and DNA damage by hydrogen peroxide are mediated by intracellular iron. Biochem. J. 218:273–280; 1984.

    PubMed  CAS  Google Scholar 

  19. Mizrachi, Y.; Lelkes, P. J.; Ornberg, L. R., et al. Specific adhesion between pheocromocytoma (PC12 cells) and adrenal medullary endothelial cells in co-culture. Cell Tissue Res. 256:356–372; 1989.

    Article  Google Scholar 

  20. Nicotera, P.; Moore, M.; Bellomo, G., et al. Demonstration and partial characterization of the glutathione disulfide-stimulated ATPase activity in the plasmamembrane fraction from rat hepatocytes. J. Biol. Chem. 260:1999–2005; 1985.

    PubMed  CAS  Google Scholar 

  21. Oberley, L. W. Free radicals and diabetes. Free Rad. Biol. Med. 5:113–124; 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Platt, J. T.; Michel, A. F. Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylendiamine. J. Histochem. Cytochem. 31:840–842; 1983.

    PubMed  CAS  Google Scholar 

  23. Rajeswari, P.; Natarajan, R.; Nadler, J. L., et al. Glucose induces lipid peroxidation and inactivation of membrane-associated ion transport enzymes in erythrocytes in vivo and vitro. Diabetes 40 (suppl.):10A; 1991.

    Google Scholar 

  24. Sato, Y.; Holta, N.; Sakamoto, N., et al. Lipid peroxide levels in serum of diabetic patients. Biochem. Med. 21:104–107; 1979.

    Article  PubMed  CAS  Google Scholar 

  25. Stortz, H.; Jelke, E. Photomicrography of weakly fluorescent objects —employment of p-phenylene diamine as a blocker of fading. Acta Histochem. 75:133–139; 1984.

    Google Scholar 

  26. Streeten, E. A.; Curcio, F.; Ornberg, R. L., et al. Cloned endothelial cells from fetal bovine bone. Proc. Natl. Acad. Sci. USA 86:916–920; 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Wayne, W. D. Biostatistics: a foundation for analysis in the health sciences, 3rd ed. New York, NY: John Wiley & Sons; 1983:230–237.

    Google Scholar 

  28. Wilbur, K. M.; Wolfson, N.; Keneston, C. B., et al. Inhibition of cell division by ultraviolet irradiated unsaturated fatty acid. Exp. Cell Res. 13:503–509; 1957.

    Article  PubMed  CAS  Google Scholar 

  29. Wolff, S. P.; Dean, R. T. Glucose autoxidation and protein modification. The potential role of ‘autoxidative’ glycosylation in diabetes. Biochem. J. 245:243–250; 1987.

    PubMed  CAS  Google Scholar 

  30. Wolfson, N.; Wilbur, K. M.; Beruheim, F. Lipid peroxide formation in regenerating rat liver. Exp. Cell Res. 10:556–558; 1956.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curcio, F., Ceriello, A. Decreased cultured endothelial cell proliferation in high glucose medium is reversed by antioxidants: New insights on the pathophysiological mechanisms of diabetic vascular complications. In Vitro Cell Dev Biol - Animal 28, 787–790 (1992). https://doi.org/10.1007/BF02631069

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631069

Key words

Navigation