Skip to main content
Log in

Serial culturing of human bronchial epithelial cells derived from biopsies

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

In the present study we describe the establishment of serial cultures of human bronchial epithelial cells derived from biopsies obtained by fiberoptic bronchoscopy. The cell cultures were initiated from small amounts of material (2 mm forceps biopsies) using either explants or epithelial cell suspensions in combination with a feeder-layer technique. The rate of cell proliferation and the number of passages (up to 8 passages) achieved were similar, irrespective of whether the explants or dissociated cells were used. To modulate the extent of differentiation, the bronchial epithelial cells were cultured either under submerged, low calcium (0.06 mM) (proliferating), normal calcium (1.6 mM) (differentiation enhancing) conditions, or at the air-liquid interface. Characterization of the bronchial epithelial cell cultures was assessed on the basis of cell morphology, cytokeratin expression, and ciliary activity. The cells cultured under submerged conditions formed a multilayer consisting of maximally three layers of polygonal-shaped, small cuboidal cells, an appearance resembling the basal cells in vivo. In the air-exposed cultures, the formed multilayer consisted of three to six layers exhibiting squamous metaplasia. The cytokeratin profile in cultured bronchial epithelial cells was similar in submerged and air-exposed cultures and comparable with the profile found in vivo. In addition to cytokeratins, vimentin was co-expressed in a fraction of the subcultured cells. The ciliary activity was observed in primary culture, irrespective of whether the culture had been established from explants or from dissociated cells. This activity was lost upon subculturing and it was not regained by prolongation of the culture period. In contrast to submerged cultures and despite the squamous metaplasia appearance, the cells showed a reappearance of cilia when cultured at the air-liquid interface. Human bronchial epithelial cell cultures can be a representative model for controlling the mechanisms of regulation of bronchial epithelial cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnes, P. J.; Cuss, F. M.; Palmer, J. B. The effect of airway epithelium on smooth muscle contractility in bovine trachea. Br. J. Pharmacol. 86:685–691; 1985.

    PubMed  CAS  Google Scholar 

  2. Broers, J. L. V.; Ramaekers, F. C. S.; Klein Rot, M., et al. Cytokeratins in different types of human lung cancer as monitored by chain-specific monoclonal antibodies. Cancer Res. 48:3221–3229; 1988.

    PubMed  CAS  Google Scholar 

  3. Chopra, D. P.; Sullivan, J.; Wille, J. J., et al. Propagation of differentiating normal human tracheobronchial epithelial cells in serum-free medium. J. Cell. Physiol. 130:173–181; 1987.

    Article  PubMed  CAS  Google Scholar 

  4. Church, M. K.; Lai, C.; Beasley, R., et al. The mediator and cellular basis of the allergic response. Allergy 43 (suppl 8):26–29; 1988.

    Article  PubMed  Google Scholar 

  5. Crandall, E. D.; Kim, K. J. Protein traffic across lung epithelia. Am. J. Respir. Cell. Mol. Biol. 1:255; 1989.

    PubMed  CAS  Google Scholar 

  6. Dairkee, S. H.; Blayney, C. M.; Asarnow, D. M., et al. Early expression of vimentin in human mammary cultures. In Vitro Cell. Dev. Biol. 21:321–327; 1985.

    PubMed  CAS  Google Scholar 

  7. Flavahan, N. A.; Aarhus, L. L.; Rimele, T. J., et al. Respiratory epithelium inhibits bronchial smooth muscle tone. J. Appl. Physiol. 58:834–838; 1985.

    PubMed  CAS  Google Scholar 

  8. Gray, T. E.; Thomassen, D. G.; Mass, M. J., et al. Quantitation of cell proliferation, colony formation, and carcinogen induced cytotoxicity of rat tracheal epithelial cells grown in culture on 3T3 feeder layers. In Vitro 19:559–570; 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Green, H.; Kehinde, O.; Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. USA 76:5665–5668; 1979.

    Article  PubMed  CAS  Google Scholar 

  10. Gruenert, D. C.; Basbaum, C. B.; Widdicombe, J. H. Long-term culture of normal and cystic fibrosis epithelial cells grown under serum-free conditions. In Vitro Cell. Dev. Biol. 26:411–418; 1990.

    Article  PubMed  CAS  Google Scholar 

  11. Hennings, H.; Michael, D.; Cheng, C., et al. Calcium regulation of growth and differentiation of epidermal cells in culture. Cell 19:245–254; 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Hogg, J. C.; Eggleston, P. A. Is asthma an epithelial disease? Am. Rev. Respir. Dis. 129:207–208; 1984.

    PubMed  CAS  Google Scholar 

  13. Holroyde, M. C. The influence of epithelium on the responsiveness of guinea-pig isolated trachea. Br. J. Pharmacol. 87:501–507; 1986.

    PubMed  CAS  Google Scholar 

  14. Ishida, K.; Kelly, L. J.; Thomson, R. J., et al. Repeated antigen challenge induces airway hyperresponsiveness with tissue eosinophilia in guinea pigs. J. Appl. Physiol. 67:1133–1139; 1989.

    PubMed  CAS  Google Scholar 

  15. Jacoby, D. B.; Nadel, J. A. Airway epithelial metabolism and airway smooth muscle hyperresponsiveness. In: Coburn, R. F., ed. Airway smooth muscle in health and disease. New York: Plenum Publishing Corporation; 1989.

    Google Scholar 

  16. Jorissen, M.; Van der Schueren, B.; Van den Berghe, H., et al. Contribution of in vitro culture methods for respiratory epithelial cells to the study of the physiology of the respiratory tract. Eur. Respir. J. 4:210–217; 1991.

    PubMed  CAS  Google Scholar 

  17. Kelsen, S. G.; Mardini, I. A.; Zhou, S., et al. A technique to harvest viable tracheobronchial epithelial cells from living human donors. Am. J. Respir. Cell Mol. Biol. 7:66–72; 1992.

    PubMed  CAS  Google Scholar 

  18. Lane, E. B.; Bártek, J.; Purkis, P. E., et al. Keratin antigens in differentiating skin. Ann. NY Acad. Sci. 455:241–258; 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Lechner, J. F.; Haugen, A.; Autrup, H., et al. Clonal growth of epithelial cells from normal adult human bronchus. Cancer Res. 41:2294–2304; 1981.

    PubMed  CAS  Google Scholar 

  20. Lechner, J. F.; Haugen, A.; McClendon, I. A., et al. Clonal growth of normal adult human bronchial epithelial cells in a serum-free medium. In Vitro 18:633–642; 1982.

    PubMed  CAS  Google Scholar 

  21. Lechner, J. F.; LaVeck, M. A. A serum-free method for culturing normal human bronchial epithelial cells at clonal density. J. Tissue Cult. Methods 9:43–48; 1985.

    Article  Google Scholar 

  22. Liu, S. C.; Karasek, M. Isolation and growth of adult human epidermal keratinocytes in cell culture. J. Invest. Dermatol. 71:157–162; 1978.

    Article  PubMed  CAS  Google Scholar 

  23. Mendelsohn, M. G.; Dilorenzo, T. P.; Abramson, A. L., et al. Retinoic acid regulates, in vitro, the two normal pathways of differentiation of human laryngeal keratinocytes. In Vitro Cell. Dev. Biol. 27A:137–141; 1991.

    PubMed  CAS  Google Scholar 

  24. Moll, R.; Franke, W. W.; Schiller, D. L., et al. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24; 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Munakata, M.; Huang, I.; Mitzner, W., et al. Protective role of epithelium in the guinea pig airway. J. Appl. Physiol. 66:1547–1552; 1989.

    PubMed  CAS  Google Scholar 

  26. Nakane, P. K.; Pierce, G. B. Enzyme-labeled antibodies: preparation and application for the localization of antigens. J. Histochem. Cytochem. 14:929–931; 1966.

    PubMed  CAS  Google Scholar 

  27. Oomen, L. C.; Ten Have-Opbroek, A. A.; Hageman, P. C., et al. Fetal mouse alveolar type II cells in culture express several type II cell characteristics found in vivo, together with major histocompatibility antigens. Am. J. Respir. Cell. Mol. Biol. 3:325–339; 1990.

    PubMed  CAS  Google Scholar 

  28. Ponec, M.; Weerheim, A.; Kempenaar, J., et al. Lipid composition of cultured human keratinocytes in relation to their differentiation. J. Lipid Res. 29:949–961; 1988.

    PubMed  CAS  Google Scholar 

  29. Powell, D. W. Barrier function of epithelia. Am. J. Physiol. 241:G275-G288; 1981.

    PubMed  CAS  Google Scholar 

  30. Régnier, M.; Pruniéras, M.; Woodley, D. Growth and differentiation of adult human epidermal cells on dermal substrates. Front. Matrix Biol. 9:4–35; 1981.

    Google Scholar 

  31. Rheinwald, J. G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes. The formation of keratinizing colonies from single cells. Cell 6:331–343; 1975.

    Article  PubMed  CAS  Google Scholar 

  32. Richard, M. H.; Viac, J.; Reano, A., et al. Vimentin expression in normal human keratinocytes grown in serum-free defined MCDB 153 medium. Arch. Dermatol. Res. 282:512–515; 1990.

    Article  PubMed  CAS  Google Scholar 

  33. Salari, H.; Schellenberg, R. R. Stimulation of human airway epithelial cells by platelet activating factor (PAF) and arachidonic acid produces 15-hydroxyeicosatetraenoic acid (15-HETE) capable of contracting bronchial smooth muscle. Pulmonary Pharmacol. 4:1–7; 1991.

    Article  CAS  Google Scholar 

  34. Schaafsma, H. E.; Ramaekers, F. C. S.; van Muijen, G. N. P., et al. Distribution of cytokeratin polypeptides in epithelia of the adult human urinary tract. Histochemistry 91:151–159; 1989.

    Article  PubMed  CAS  Google Scholar 

  35. Sigal, E.; Nadel, J. A. The airway epithelium and arachidonic acid 15-lipoxygenase. Am. Rev. Respir. Dis. 143:S71-S74; 1991.

    PubMed  CAS  Google Scholar 

  36. Stuart-Smith, K.; Vanhoutte, P. M. Heterogeneity in the effects of epithelium removal in the canine bronchial tree. J. Appl. Physiol. 63:2510–2515; 1987.

    PubMed  CAS  Google Scholar 

  37. Van Muijen, G. N. P.; Warnaar, S. O.; Ponec, M. Differentiation-related changes of cytokeratin expression in cultured keratinocytes and in fetal, newborn, and adult epidermis. Exp. Cell Res. 171:331–345; 1987.

    Article  PubMed  Google Scholar 

  38. Van Muijen, G. N. P.; Ruiter, D. J.; Franke, W. W., et al. Cell type heterogeneity of cytokeratin expression in complex epithelia and carcinomas as demonstrated by monoclonal antibodies specific for cytokeratins nos. 4 and 13. Exp. Cell. Res. 162:97–113; 1986.

    Article  PubMed  Google Scholar 

  39. Watt, F. M. Terminal differentiation of epidermal keratinocytes. Curr. Opinion Cell Biol. 1:1107–1115; 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Wu, R.; Martin, W. R.; Robinson, C. B., et al. Expression of mucin synthesis and secretion in human tracheobronchial epithelial cells grown in culture. Am. J. Respir. Cell Mol. Biol. 3:467–478; 1990.

    PubMed  CAS  Google Scholar 

  41. Wu, R.; Nolan, E.; Turner, C. Expression of tracheal differentiated functions in serum-free, hormone-supplemented medium. J. Cell Physiol. 127:167–181; 1985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jong, P.M., van Sterkenburg, M.A.J.A., Kempenaar, J.A. et al. Serial culturing of human bronchial epithelial cells derived from biopsies. In Vitro Cell Dev Biol - Animal 29, 379–387 (1993). https://doi.org/10.1007/BF02633985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02633985

Key words

Navigation