Skip to main content
Log in

Absence of trypsinogen autoactivation and immunolocalization of pancreatic secretory trypsin inhibitor in acinar cells in vitro

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

To establish the significance of the addition of trypsin inhibitors to pancreatic acinar cells maintained in vitro, cells were cultured in the presence or absence of soybean trypsin inhibitor. Both cultures exhibited similar growth pattern, ultrastructural appearance, as well as secretory properties. Moreover, there was no evidence of trypsinogen activation in the culture medium. Using the immunocytochemical approach, pancreatic secretory trypsin inhibitor antigenic sites were revealed with specific polyclonal and monoclonal antibodies. The results obtained demonstrated that this trypsin inhibitor is in fact a typical pancreatic secretory protein being processed through the endoplasmic reticulum-Golgi-granule secretory pathway of the acinar cells in rat and human tissues. While the polyclonal antibody yield labelings of increasing intensities along the secretory pathway, the monoclonal one probably due to the molecular nature of its specific antigenic determinant, gave higher labelings in the endoplasmic reticulum. In conclusion the present study has shown that pancreatic acinar cells secrete a specific pancreatic trypsin inhibitor which most probably is involved in the mechanism to prevent trypsinogen activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, G.; Reinshagen, M.; Göke, B. Effect of camostat on exocrine pancreatic function in humans. Biomed. Res. 10:1–7; 1989.

    CAS  Google Scholar 

  2. Adler, G.; Rohr, G.; Kern, H. F. Alteration of membrane fusion as a cause of acute pancreatitis in the rat. Dig. Dis. Sci. 27:993–1002; 1982.

    Article  PubMed  CAS  Google Scholar 

  3. Agerberth, B.; Ostenson, C. G.; Efendic, S., et al. Pancreatic secretory trypsin inhibitor (PSTI) isolated from pig intestine. Influence on insulin and somatostatin release. FEBS Lett. 281:227–230; 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Arias, A. E.; Bendayan, M. Secretagogue induction of cell differentiation in pancreatic acinar cellsin vitro. Exp. Cell Res. 195:199–206; 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Bendayan, M. Anatomic basis of islet-acinar interaction in the pancreas. Regul. Pept. Lett. 11:1–7; 1990.

    Google Scholar 

  6. Bendayan, M. Protein A-gold and protein G-gold postembedding immunoelectron microscopy. In: Hayat, M. A., ed. Colloidal gold. Principles, methods and applications, vol. 1. San Diego: Academic Press; 1989:33–94.

    Google Scholar 

  7. Bendayan, M.; Duhr, M. A.; Gingras, D. Studies on pancreatic acinar cells in tissue culture: basal lamina (basement membrane) matrix promotes three-dimensional reorganization. Eur. J. Cell Biol. 42:60–67; 1986.

    PubMed  CAS  Google Scholar 

  8. Bendayan, M. Protein A-gold electron microscopic immunocytochemistry: methods, applications and limitations. J. Electron Microsc. Technol. 1:243–270; 1984.

    Article  CAS  Google Scholar 

  9. Bendayan, M. Concentration of amylase along its secretory pathway in the pancreatic acinar cells as revealed by high resolution immunocytochemistry. Histochem. J. 16:85–108; 1984.

    Article  PubMed  CAS  Google Scholar 

  10. Bettinger, J. R.; Grendell, J. H. Intracellular events in the pathogenesis of acute pancreatitis. Pancreas 6:S2-S6; 1991.

    PubMed  Google Scholar 

  11. Bohe, M.; Lindstrom, C. G.; Ohlsson, K. Varying occurrence of gastroduodenal immunoreactive pancreatic secretory trypsin inhibitor. J. Clin. Pathol. 40:1345–1348; 1987.

    PubMed  CAS  Google Scholar 

  12. Böldicke, T.; Emery, S. G.; Reubke, B., et al.In vitro immunization of mouse spleen cells using protein ad peptide antigens. In: Epenctos, A. A., ed. Monoclonal antibodies. Applications in clinical oncology. London: Chapman and Hall; 1991:1–10.

    Google Scholar 

  13. Böldicke, T.; Kindt, S.; Maywald, F., et al. Production of specific monoclonal antibodies against the active sites of human pancreatic secretory trypsin inhibitor variants byin vitro immunization with synthetic peptides. Eur. J. Biochem. 175:259–264; 1988.

    Article  PubMed  Google Scholar 

  14. Brannon, P.; Orrison, B. M. Kretchmer, N. Primary culture of rat pancreatic acinar cells. In Vitro Cell. Dev. Biol. 21:6–14; 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Burck, C. J. Pancreatic secretory trypsin inhibitors. Methods Enzymol. 19:906–914; 1970.

    CAS  Google Scholar 

  16. Chen, J.; Stuckey, E. C.; Berry, C. L. Three-dimensional culture of rat exocrine pancreatic cells using collagen gels. Br. J. Exp. Pathol. 66:551–559; 1985.

    PubMed  CAS  Google Scholar 

  17. Conlon, J. M.; Kim, C. B.; Magee, D. F. Isolation and structural characterization of a molecular variant of dog pancreatic secretory trypsin inhibitor. Int. J. Pancreatol. 8:59–64; 1991.

    PubMed  CAS  Google Scholar 

  18. Friguet, B.; Schafotte, A. F.; Dgavadi-Ohaniance, L., et al. Measurement of the true affinity constant in solution on antigen-antibody complexes by enzyme-linked immunosorbent assay. J. Immunol. Methods 77:305–319; 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Fukayama, M.; Hayashi, Y.; Koike, M., et al. Immunohistochemical localization of pancreatic secretory trypsin inhibitor fetal and adult pancreatic and extrapancreatic tissues. J. Histochem. Cytochem. 34:227–235; 1986.

    PubMed  CAS  Google Scholar 

  20. Greenbaum, L. M.; Hirshkowitz, A. Endogenous cathepsin activation of trypsinogen in extracts of dog pancreas. Proc. Soc. Exp. Biol. Med. 107:74–76; 1961.

    PubMed  CAS  Google Scholar 

  21. Greene, L. J.; Pubols, M. H.; Bartelt, D. C. Human pancreatic secretory trypsin inhibitor. Methods Enzymol. 45:813–856; 1976.

    Article  PubMed  CAS  Google Scholar 

  22. Gudgeon, A. M.; Heath, D. I.; Hurley, P., et al. Trypsinogen activation peptides assay in the early prediction of severity of acute pancreatitis. Lancet 335:4–8; 1990.

    Article  PubMed  CAS  Google Scholar 

  23. Horii, A.; Tomita, N.; Yokouchi, H., et al. On the cDNA’s for two types of rat pancreatic secretory trypsin inhibitor. Biochem. Biophys. Res. Commun. 162:151–159; 1989.

    Article  PubMed  CAS  Google Scholar 

  24. Hurley, P. R.; Cook, A.; Jehanli, A., et al. Development of radioimmunoassays for free tetra-l-aspartyl-l-lysine trypsinogen activation peptides (TAP). J. Immunol. Methods 111:195–203; 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Kido, H.; Yokogoshi, Y.; Katunuma, N. A low-molecular-mass Kazaltype protease inhibitor isolated from rat hepatocytes is identical to rat pancreatic secretory trypsin inhibitor II. Eur. J. Biochem. 188:501–506; 1990.

    Article  PubMed  CAS  Google Scholar 

  26. Kikuchi, N.; Nagata, K.; Shin, M., et al. Site-directed mutagenesis of human pancreatic secretory trypsin inhibitor. J. Biochem. 106:1059–1063; 1989.

    PubMed  CAS  Google Scholar 

  27. Kikuchi, N.; Nagata, K.; Yoshida, N., et al. The multiplicity of human pancreatic secretory trypsin inhibitor. J. Biochem. 98:687–694; 1985.

    PubMed  CAS  Google Scholar 

  28. Lankisch, P. G.; Pohl, U.; Göke, B., et al. Effect of FOY-305 (Camostate) on severe acute pancreatitis in two experimental animal models. Gastroenterology 96:193–199; 1989.

    PubMed  CAS  Google Scholar 

  29. Lankisch, P. G. Acute and chronic pancreatitis. An update on management. Drugs 28:554–564; 1984.

    PubMed  CAS  Google Scholar 

  30. Laskowski, M.; Kato, I. Protein inhibitors of proteinases. Ann. Rev. Biochem. 49:593–626; 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Letko, G.; Falkenberg, B.; Matthias, R. Isolated acinar cells from rat pancreas in pathogenic studies on acute pancreatitis. Z. Exp. Chir. Transplant. Kuenstliche Organe 22:197–203; 1989.

    CAS  Google Scholar 

  32. Logsdon, C.; Williams, J. A. Pancreatic acinar cells in monolayer culture. Am. J. Physiol. 250:G440-G447; 1986.

    PubMed  CAS  Google Scholar 

  33. Marks, W. H.; Ohlsson, K.; Polling, A. Immunocytochemical distribution of trypsinogen and pancreatic secretory trypsin inhibitor in normal and neoplastic tissues in man. Scand. J. Gastroenterol. 19:673–676; 1984.

    PubMed  CAS  Google Scholar 

  34. Maywald, F.; Böldicke, T.; Gross, G., et al. Human pancreatic secretory trypsin inhibitor (PSTI) produced in active form and secreted fromEscherichia coli. Gene 68:357–369; 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Nagata, K.; Ide, M.; Yoshida, N., et al. Production and some properties of monoclonal antibodies against human pancreatic secretory trypsin inhibitor. Biochem. Int. 21:1065–1072; 1990.

    PubMed  CAS  Google Scholar 

  36. Niinobu, T.; Ogawa, M.; Murata, A., et al. Identification and characterization of receptors specific for human pancreatic secretory trypsin inhibitor. J. Exp. Med. 172:1133–1142; 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Ogawa, M. Pancreatic secretory trypsin inhibitor as an acute phase reactant. Clin. Biochem. 21:19–25; 1988.

    Article  PubMed  CAS  Google Scholar 

  38. Ohlsso, K.; Olsson, R.; Björk, P., et al. Local administration of human pancreatic secretory trypsin inhibitor prevents the development of experimental acute pancreatitis in rats and dogs. Scand. J. Gastroenterol. 24:693–704; 1989.

    Google Scholar 

  39. Oliver, C. Isolation and maintenance of differentiated exocrine gland acinar cells in vitro. In Vitro 16:297–305; 1980.

    PubMed  CAS  Google Scholar 

  40. Read, R. J.; James, M. N. G. Introduction to the protein inhibitors: x-ray crystallography. In: Barrett, A. J.; Salvensen, G., eds. Proteinase inhibitors. Amsterdam: Elsevier; 1986:301–336.

    Google Scholar 

  41. Rinderknecht, H. Pancreatic secretory enzymes. In: Go, W. L. W.; Gardner, J. D.; Brooks, F. P., et al., eds. The exocrine pancreas: biology, pathobiology and diseases. New York: Raven; 1986:163–183.

    Google Scholar 

  42. Shibata, T.; Ogawa, M.; Takata, N., et al. Distribution of pancreatic secretory trypsin inhibitor in various human tissues and its inactivation in the gastric mucosa. Res. Commun. Chem. Pathol. Pharmacol. 55:243–248; 1987.

    PubMed  CAS  Google Scholar 

  43. Steer, M. L. Etiology and pathophysiology of acute pancreatitis. In: Go, V. L. W.; Gardner, J. D.; Brooks, F. P., et al., eds. The exocrine pancreas: biology, pathobiology and diseases. New York: Raven; 1986:465–474.

    Google Scholar 

  44. Tomita, N.; Horii, A.; Yamamoto, T., et al. Expression of pancreatic secretory trypsin inhibitor gene in neoplastic tissues. FEBS Lett. 225:113–119; 1987.

    Article  PubMed  CAS  Google Scholar 

  45. Watanabe, O.; Baccino, F. M.; Steer, M. L., et al. Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. Am. J. Physiol. 246:G457–467; 1984.

    PubMed  CAS  Google Scholar 

  46. Willemer, S.; Klöppel, G.; Kern, H. F., et al. Immunocytochemical and morphometric analysis of acinar zymogen granules in human acute pancreatitis. Virchows Arch. A. Pathol. Anat. 415:115–123; 1989.

    Article  CAS  Google Scholar 

  47. Yasuda, T.; Ogawa, M.; Murata, A., et al. Response to IL-6 stimulation of human hepatoblastoma cells: production of pancreatic secretory trypsin inhibitor. Biol. Chem. Hoppe-Seyler 371:95–100; 1990.

    PubMed  CAS  Google Scholar 

  48. Yokoyama, Y.; Takebe, T.; Ishii, K. Influence of prolonged oral administration of camostat on pancreatic function in patients with pancreatitis. Biomed. Res. 10:57–61; 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arias, A.E., Böldicke, T. & Bendayan, M. Absence of trypsinogen autoactivation and immunolocalization of pancreatic secretory trypsin inhibitor in acinar cells in vitro. In Vitro Cell Dev Biol - Animal 29, 221–227 (1993). https://doi.org/10.1007/BF02634187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634187

Key words

Navigation