Skip to main content
Log in

Abstract

The basic principles of spiral MR image acquisition and reconstruction are summarised with the aim to explain how high quality spiral images can be obtained. The sensitivity of spiral imaging to off-resonance effects, gradient system imperfections and concomitant fields are outlined and appropriate measures for corrections are discussed in detail. Phantom experiments demonstrate the validity of the correction approaches. Furthermore, in-vivo results are shown to demonstrate the applicability of the corrections under in-vivo conditions. The spiral image quality thus obtained was found to be comparable to that obtainable with robust spin warp sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Likes RS. Moving gradient zeugmatography. US patent 1981; 4.397.343.

  2. Ahn BC, Kim JH, Cho ZH. High-speed spiral-scand echo plannar NMR imaging-I. IEEE Trans Med Imag 1986;MI-5:2–7.

    CAS  Google Scholar 

  3. Meyer CH, Hu BS, Nishimura DG, Macovski A. Fast spiral coronary artery imaging. Mag Reson Med 1992;28:202–13.

    Article  CAS  Google Scholar 

  4. Nishimura DG, Irarrazabel P, Meyer CH, A flow velocityk-space analysis of flow effects in echo-planar and spiral imaging. Mag Reson Med 1995;33:549–56.

    Article  CAS  Google Scholar 

  5. Noll DC, Cohen JD, Meyer CH, Schneider W. Spiralk-space MR imaging of cortical activation. J Magn Reson Imag 1995;5:49–56.

    Article  CAS  Google Scholar 

  6. Block W, Pauly J, Nishimura D, RARE spiral T2-weighted imaging, 1997;37:582–590.

    CAS  Google Scholar 

  7. Kerr A, Pauly J, Hu BS, Li KC, Hardy C, Meyer CH, Macovski A, Nishimura D. Real-time interactive MRI on a conventional scanner. Mag Reson Med 1997;38:355–67.

    Article  CAS  Google Scholar 

  8. Liao JR, Pauly JM, Pelc N. MRI using piecewise-linear spiral trajectories. Mag Reson Med 1997;38:246–52.

    Article  CAS  Google Scholar 

  9. Mason GF, Harshbarger T, Herington H, Zhang Y, Prohost G, Twieg DB. A method to measure arbitraryk-space trajectories for rapid MR imaging. Mag Reson Med 1997;38:492–6.

    Article  CAS  Google Scholar 

  10. Ding X, Tach J, Ruggieri P, Perl J, Masaryk T. Improvement of spiral MRI with the measuredk-space trajectory. J Magn Reson Imag 1997;7:938–40.

    Article  CAS  Google Scholar 

  11. Maeda A, Sano K, Yokoyama T. Reconstruction by weighted correlation for MRI with time-varying gradients. IEEE Trans Med Imag 1988;7:26–31.

    Article  CAS  Google Scholar 

  12. Noll DC, Meyer CH, Pauly JM, Nishimura DG, Macovski A. A homogeneity correction method for magnetic resonance imaging with time-varying gradients. IEEE Trans Med Imag 1991;10:629–37.

    Article  CAS  Google Scholar 

  13. Twieg DB. Thek-space trajectory formulation of the NMR imaging process with applications in the analysis and synthesis of imaging methods. Med Phys 1983;10(5):610–21.

    Article  PubMed  CAS  Google Scholar 

  14. Ljunggren S. A simple graphical representation of Fourier-based imaging methods. J Magn Reson 1983;54:338–43.

    Google Scholar 

  15. Vlaardingerbroek MT, den Boer, JA. Magnetic Resonance Imaging Theory and Practice. Berlin: Springer, 1997.

    Google Scholar 

  16. Hardy CJ, Cline HE. Broadband nuclear magnetic resonance pulses with two-dimensional spatial selectivity. J Appl Phys 1989;66:1513–6.

    Article  Google Scholar 

  17. King KF, Foo TKF, Crawford CR. Optimized gradient wave-forms for spiral scanning. Mag Reson Med 1995;34:156–60.

    Article  CAS  Google Scholar 

  18. Bracewell RN. The Fourier Transform and its Applications. New York: McGraw-Hill, 1986.

    Google Scholar 

  19. Rasche V, Proksa R. Reconstruction of MR images from data sampled along arbitraryk-space trajectories, In: Proc. ISMRM. 6th Annual Meeting, Sydney, 1998, p. 668.

  20. Schomberg H, Timmer J. The gridding method for image reconstruction by Fourier transformation. IEEE Trans Med Imag 1995;14:596–607.

    Article  CAS  Google Scholar 

  21. Hoge RD, Remi Kwan KS, Pike GB. Density compensation functions for spiral MRI. Mag Reson Med 1997;38:117–28.

    Article  CAS  Google Scholar 

  22. Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding. IEEE Trans Med Imag 1991;10:473–8.

    Article  CAS  Google Scholar 

  23. Lauzon ML, Rutt BK. Effect of polar sampling ink-space. Mag Reson Med 1996;36:940–9.

    Article  CAS  Google Scholar 

  24. Man LC, Pauly JM, Macovski A. Multifrequency interpolation for fast off-resonance correction. Mag Reson Med 1997;37:785–92.

    Article  CAS  Google Scholar 

  25. Norton SJ. Fast magnetic resonance imaging with simultaneously oscillating and rotating gradients. IEEE Trans Med Imag 1987;MI-6:21–31.

    Article  CAS  Google Scholar 

  26. Noll DC, Meyer CH, Pauly JM, Nishimura DG, Macovski A. Deblurring for non-2D Fourier transform magnetic resonance imaging. Mag Reson Med 1992;25:319–33.

    Article  CAS  Google Scholar 

  27. Noll DC. Reconstruction techniques for magnetic resonance imaging. Ph.D. Thesis, Stanford University, 1991.

  28. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in c. New York: Cambrige University Press, 1992.

    Google Scholar 

  29. Sekihara K, Matsui S, Kohno H. NMR imaging for magnets with large nonuniformitities. IEEE Trans Med Imag 1985;MI-4:193–9.

    CAS  Google Scholar 

  30. Meyer CH, Pauly JM, Macovski A, Nishimura D. Simultaneous spatial and spectral selective excitation. Mag Reson Med 1990;15:287–304.

    Article  CAS  Google Scholar 

  31. Schick F. Simultaneous highly selective MR water and far imaging using a simple new type of spectral-spatial excitation. Mag Reson Med 1998;40:194–202.

    Article  CAS  Google Scholar 

  32. Simonyi K. Theoretische Elektrotechnik. Bad Langensalza: Barth Verlagsgesellschaft mdHCh, 1993.

    Google Scholar 

  33. Aldefeld B, Börnert P. Effects of gradient anisotropy in MRI. Mag Reson Med 1998;39:606–14.

    Article  CAS  Google Scholar 

  34. Duyn J, Yihong Y, Frank JA, van der Veen JW. Simple correction method fork-space trajectory deviation in MRI. J Magn Reson 1998;132:150–3.

    Article  PubMed  CAS  Google Scholar 

  35. Norris DG, Hutchison JMS. Concomitant magnetic field gradients and their effects on imaging at low magnetic field strengths. J. Magn Reson Imag 1990;8:33–7.

    Article  CAS  Google Scholar 

  36. Weisskoff RM, Cohen MS, Rzedzian RR. Nonaxial whole-body instant imaging. Mag Reson Med 1993;29:796–803.

    Article  CAS  Google Scholar 

  37. King K, Ganin A, Zhou X, Berstein M. Concomitant field effect in spiral scans. Mag Reson Med 1999;41:103–12.

    Article  CAS  Google Scholar 

  38. Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH. Concomitant gradient terms in phase contrast MR: analysis and correction. Mag Reson Med 1998;39:300–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Börnert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Börnert, P., Schomberg, H., Aldefeld, B. et al. Improvements in spiral MR imaging. MAGMA 9, 29–41 (1999). https://doi.org/10.1007/BF02634590

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634590

Keywords

Navigation