Skip to main content
Log in

Myocardial characteristics of thyroxine stimulated hypertrophy a structural and functional study

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The effects of thyroxine-stimulated hypertrophy (TSH) were studied in the porcine left ventricular myocardium. Hypertrophy was produced in six adult pigs by administration of triiodothyronine (1 mg/kg; i.v) for eight days. Six pigs served as controls. The degree of hypertrophy, determined by left ventricular-to-body weight ratio, was 47%. With hypertrophy there was a significant increase in heart rate, blood pressure and myocardial blood flows. Minimal coronary resistance measured during adenosine infusion was lower in the TSH group compared with the control group. Anatomic studies revealed a balanced proliferative response of mitochondria, myofibrils and the t-tubular system during TSH. Analysis of the microvasculature indicated that the capillary and arteriolar beds both experienced growth which paralleled myocyte growth during TSH. These results suggest that thyroxine administration promotes angiogenesis in the microvascular bed which provides a partial anatomic rationale for the lowered minimal coronary resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anversa P, Beghi C, Levicky V, McDonald SL, Kikkawa Y (1982) Morphometry of right ventricular hypertrophy induced by strenuous exercise in rat. Am J Physiol 243:H856–861

    PubMed  CAS  Google Scholar 

  2. Anversa P, Levicky V, Beghi C, McDonald SL, Kikkawa Y (1983) Morphometry of exercise-induced right ventricular hypertrophy in the rat. circ Res 52:57–64

    PubMed  CAS  Google Scholar 

  3. Badke FR, White FC, LeWinter M, Covell J, Andres J, Bloor C (1981) Effects of experimental volume-overload hypertrophy on myocardial blood flow and cardiac function. Am J Physiol 241:564–569

    Google Scholar 

  4. Barnard RJ, Duncan HW, Baldwin KM, Grimditch G, Buckberg GD (1980) Effects of intensive exercise training on myocardial performance and coronary blood flow. J Appl Physiol 49:444–449

    PubMed  CAS  Google Scholar 

  5. Bloor CM, Leon AS (1970) Interaction of age and exercise on the heart and its blood supply. Lab Invest 22:160–165

    PubMed  CAS  Google Scholar 

  6. Breisch EA, White FC, Bloor CM (1984) Myocardial characteristics of pressure overload hypertrophy. A structural and functional study. Lab Invest 51:333–342

    PubMed  CAS  Google Scholar 

  7. Breisch EA, White FC, Nimmo LE, Bloor CM (1986) Cardiac vasculature and flow during pressure-overload hypertrophy. Am J Physiol 251:H1031–1037

    PubMed  CAS  Google Scholar 

  8. Breisch EA, White FC, Nimmo LE, McKirnan MD, Bloor CM (1986) Exercise-induced cardiac hypertrophy: a correlation of blood flow and microvasculature. J Appl Physiol 60:1259–1267

    PubMed  CAS  Google Scholar 

  9. Chilian WM, Wangler RD, Peters KG, Tomanek RJ, Marcus ML (1985) Thyroxine-induced left ventricular hypertrophy in the rat. Anatomical and physiological evidence for angiogenesis. Circ Res 57:591–598

    PubMed  CAS  Google Scholar 

  10. Ciaraldi TP, Marinetti GV (1975) Hormone action at the membrane level. VIII. Adrenergic receptors in rat heart and adipocytes and their modulation by thyroxine. Biochim Biophys Acta 541:334–346

    Google Scholar 

  11. Craft-Cormney C, Hansen JT (1980) Early ultrastructural changes in the myocardium following thyroxine-induced hypertrophy. Virchows Arch B Cell Path 33:267–273

    Article  CAS  Google Scholar 

  12. Detweiler KD (1973) Control mechanisms of the circulatory system. In: Brobeck JR (ed) Best and Taylor’s, Physiological basis of medical practice. Williams & Wilkins, Baltimore, MD. pp 164–188

    Google Scholar 

  13. Edgren J, Von Knorring J, Lindy S, Turto H (1976) Heart volume and myocardial connective tissue during development and regression of thyroxine-induced cardiac hypertrophy in rats. Acta Physiol Scand 97:514–518

    Article  PubMed  CAS  Google Scholar 

  14. Gascho JA, Mueller TM, Eastham C, Marcus ML (1982) Effects of volume overload hypertrophy on the coronary circulation in awake dogs. Cardiovasc Res 16:288–292

    PubMed  CAS  Google Scholar 

  15. Gerdes AM, Callas G, Kasten FH (1979) Differences in regional capillary distribution and myocyte sizes in normal and hypertrophic rat hearts. Am J Anat 156:523–532

    Article  PubMed  CAS  Google Scholar 

  16. Goldman S, Olajos M, Friedman H, Roeske WR, Morkin E (1982) Left ventricular performance in conscious thyrotoxic calves. Am J Physiol 242:H113-H121

    PubMed  CAS  Google Scholar 

  17. Goodkind MJ, Dambach GE, Thyrum PT, Luchi RJ (1974) Effect of thyroxine on ventricular myocardial contractility and ATPase activity in guinea pigs. Am J Physiol 226:66–72

    PubMed  CAS  Google Scholar 

  18. Hammond HK, White FC, Buxton ILP, Saltzstein P, Brunton LL, Longhurst JC (1987) Increased myocardial B receptors and adrenergic responses in hyperthyroid pigs. Am J Physiol 252:H283–290

    PubMed  CAS  Google Scholar 

  19. Laughlin MH, Diana JN, Tipton CM (1978) Effects of exercise training on coronary reactive hyperemia and blood flow in the dog. J Appl Physiol 45:604–610

    PubMed  CAS  Google Scholar 

  20. Legato MJ, Mulieri LA, Alpert NR (1984) The ultrastructure of myocardial hypertrophy: Why does the compensated heart fail? Europ Heart J 5:251–269

    Google Scholar 

  21. Liang IYS, Hamra M, Stone HL (1984) Maximum coronary blood flow and minimum coronary resistance in exercise-trained dogs. J Appl Physiol 56:641–647

    PubMed  CAS  Google Scholar 

  22. Ljungquist A, Unge G (1972) The finer intramyocardial vasculature in various forms of experimental cardiac hypertrophy. Acta Pathol Microbiol Scand (A) 80:329–340

    Google Scholar 

  23. Loud AV, Anversa P (1984) Biology of disease. Morphometric analysis of biologic processes. Lab Invest 50:250–261

    PubMed  CAS  Google Scholar 

  24. Mandache E, Unge G, Ljungquist A (1972) Myocardial blood capillary reaction in various forms of cardiac hypertrophy. An electron microscopical investigation in the rat. Virchows Arch Abt B Zellpath 11:97–110

    CAS  Google Scholar 

  25. Mathieu O, Cruz-Orive LM, Hoppeler H, Weibel ER (1983) Estimating length density and quantifying anisotrophy in skeletal muscle capillaries. J Microsc 131:131–146

    PubMed  CAS  Google Scholar 

  26. McCallister LP, Page E (1973) Effecxts of thyroxine on ultrastructure of rat myocardial cells: a stereological study. J Ultra Res 42:131–155

    Article  Google Scholar 

  27. McElroy CL, Gissen SA, Fishbein MC (1978) Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat. Circ 57:958–962

    CAS  Google Scholar 

  28. Meerson FZ, Zalatayeva TA, Lagutchev SS, Pshennikova MG (1964) Structure and mass of mitochondria in the process of compensatory hyperfunction and hypertrophy of the heart. Exp Cell Res 36:568–578

    Article  PubMed  CAS  Google Scholar 

  29. Page E, McCallister LP (1973) Quantitative electron microscopic description of heart muscle cells. Application to normal, hypertrophied and thyroxine-stimulated hearts. Amer J Cardiol 31:172–181

    Article  PubMed  CAS  Google Scholar 

  30. Page E, Surdyk-Droske M (1979) Distribution, surface density and membrane area of diadic junctional contacts between plasma membrane and terminal cisterns in mammalian ventricle. Circ Res 45:260–267

    PubMed  CAS  Google Scholar 

  31. Papadimitriou JM, Hopkins BE, Taylor RR (1974) Regression of left ventricular dilation and hypertrophy after removal of volume overload-morphological and ultrastructural study. Circ Res 35:127–135

    PubMed  CAS  Google Scholar 

  32. Rakusan K, Moravec J, Hatt PY (1980) Regional capillary supply in the normal and hypertrophied rat heart. Microvasc Res 20:319–326

    Article  PubMed  CAS  Google Scholar 

  33. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  34. Sanders MFC, White FC, Peters TM, Bloor CM (1978) Effects of endurance exercise on coronary collateral blood flow in miniature swine. Am J Physiol 234:H614–619

    PubMed  CAS  Google Scholar 

  35. Schosser A, Arfors KE, Messner K (1979) Program for regional blood flow using the radioactive microsphere method. Comput Programs Biomed 9:19–38

    Article  PubMed  CAS  Google Scholar 

  36. Stewart JM, Page E (1978) Improved stereological techniques for studying myocardial cell growth: application to external sarcolemma, T. system, and intercalated disks of rabbit and rat hearts. J Ultrastruct Res 65:119–134

    Article  PubMed  CAS  Google Scholar 

  37. Talafih K, Briden KL, Weiss HR (1983) Thyroxine-induced hypertrophy of the rabbit heart. Effect on regional oxygen extraction, flow, and oxygen consumption. Circ Res 52:272–279

    PubMed  CAS  Google Scholar 

  38. Thomas DP, Phillips SJ, Bove AA (1984) Myocardial morphology and blood flow distribution in chronic volume-overload hypertrophy in dogs. Basic Res Cardiol 79:379–388

    Article  PubMed  CAS  Google Scholar 

  39. Weibel ER (1979) Point counting methods. In: Weibel ER (ed) Stereological methods. Academic Press, London, pp 101–161

    Google Scholar 

  40. Zitten RZ, Martin BJ, Low RB, Alpert NR (1982) Altered myosin isozyme patterns from pressure-overloaded and thyrotoxic hypertrophied rabbit hearts. Circ Res 50:856–864

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breisch, E.A., White, F.C., Hammond, H.K. et al. Myocardial characteristics of thyroxine stimulated hypertrophy a structural and functional study. Basic Res Cardiol 84, 345–358 (1989). https://doi.org/10.1007/BF02650869

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650869

Key words

Navigation